

I

r

i

£ 112.8 12.5

- 12.2

£ m 12.0
1.1

1.25 11.4 i 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BU«CAU OF STANDARDS - i»63 - A

-I

J

•I

I

CO

C\>
CO

I I y
§

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
DEVELOPMENT OF THE COMPUTER SYSTEMS

MANAGEMENT INSTRUCTIONAL LABORATORY AT THE
NAVAL POSTGRADUATE SCHOOL

by

Kenneth J. Mills
Jesse M. Richards

Glen F. Tilley

June 1983

Thesis Advisor: N. F. Schneidewind

P"

Approved for public release; distribution unlimited

DTI
Tl 83 Oo 13 114

A

r." I *- •

I SEP 2

*

4

I

I

u

SICUNITV CLASSIFICATION OP THIS »AOt (Wham Data Bni.r.<0

REPORT DOCUMENTATION PAGE
I WTCTrSPBWl 2. OOVT ACCESSION NO.

,3 S3
*• TITLE (ana SuBMff«)
Development of the Computer Systems
Management Instructional Laboratory at
the Naval Postgraduate School

7. AUTMOWV

Kenneth J. Mills
Jesse M. Richards
Glen F. Tilley

PPPSHH ONOANIZATION NAMI ANO AOONtSS

Naval Postgraduate School
Monterey, California 93940

It. CONTROLLING OrriCt MAMC ANO AOOMESS

Naval Postgraduate School
Monterey, California 93940

HE uöMiTöfttNd AMNCY NAH« I AOOHCSV" 3RES5 IM« cänSSSnä ow55)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1- RECIPIENT'S CATALOG NUMBER

S. TYPE OF NEPOPT A PERIOD COVERED

Master's Thesis
June 1983

• • PERFORMING OHO. REPORT NUMBER

». CONTRACT OP «PJANT NUMBERf.,1

10. PROGRAM ELEMENT, PROJECT. TASK
ARE» 4 WORK UNIT NUMBERS

I*. REPORT DATE

June, 19f
IS. NUMBER OP PA<

-££S_
IS. SECURITY CLASS, (at thlt r«port)

UNCLASSIFIED
IS«. OECLASSIFICATlON/DOWNGRADING

SCHEDULE

I«. OlSTmOUTION «TATCMKNT (»I tMa Haßart)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (at 'A. amain* mttataa lit »I.«* M, It mWaranl tram Kamart)

IB. IUPPL«H«NTAPV NOTES

IS. KEY WOPJOI fmSmm am imaarma «M» if BBBBBBsW an* ImamUIr kp alat* numb,,)

Computer Technology, Instructional Laboratory

ABSTRACT fCmllmn •" NNM alma It maaaaaatr ami Imamtilr *p alaak namrnar)

'he ability to converse effectively with technicians has been
recognized as a critical skill for managers of data processing
activities. This need has been addressed by the Association
for Computing Machinery in their recommended curricula for the
education of Information Systems specialists. Members of the
Association have also described the functions of a graduate
of those curricula to be that of a boundary spanner and av (Cont)

00,:rr,1473 EOITIOM OP < MOV •• IS OBSOLETE

S/N 0107- LP- 014- 4601 . s£ SICUNITV CLASSIFICATION OP THIS PAUS (Whan Data KSSSBB

1

KCUMTV CLASSIFICATION OF THIS F-AO« f^ °— «»«—<

ABSTRACT (Continued) Block # 20

^change agent. Other authors have identified that these skills
need to be gained in practical environments, and that the man-
ager needs to know at least a minimum of the technical language
in order to select good technicians for his staff, and to
communicate with that staff effectively. At the Naval Post-
graduate School a course of instruction in technical aspects of
the computer was designed into a newly constructed microcomputer
laboratory. This thesis is the report of the evolution of
that laboratory and course of instruction, 4

I

t
S N 0102- IF-0U-4601

flC ffCUHITV CLASSIFICATION W THIS FAOtf»M" D— *">•*•*>

H

J
Approved for public release; distribution unlimited.

Development of %hs Computer Systems Hanageaent
instructional Laboratory at the

Naval Postgraduate School

by

Kenneth J. Mills
Lieutenant. United States Navy

B.S., University of New Mexico, 1976

Jesse w, Richards
Commander, United States Navy

E.A., University of Virginia, 1967

Glen F. Tilley
Lieutenent, United States Navy

E.S., University of Hashington, 1977

I
Authors:

Subiitted in partial fulfillment of the
requirements for the degree of

BASIER OF SCIENCE I-N INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
June 19 83

SC/JIZML
f44c t(\&M*J*m

Approved by;_„/JJZU%2L&<1A, '~^ur^^l<£^U?.t&4ßJA^^
Thesis Advisor

\\rn"". A. V""**-

t
Chairman, Department of Administrative Sciences

 V^JLLT-»^

4-

I

J

1

IBS TRACT

Ihe atility to converse effectively with technicians has
been recognized as a critical skill for managers of data
processing activities. This need has been addressed by the
Association fcr Computing Machinery in their recommended
curricula fcr the education of Information systems special-
ists. Members of the Association have also described the
functions cf a graduate of those curricula to be that of a
boundary spanner and a change agent. Other authors have
identified that these skills need to be gained in practical
environments, and that the manager needs to know at least a
minimum cf the technical language in order to select good
technicians fcr his staff, and to communicate with that
staff effectively. At the Haval Postgraduate School a
course of instruction in technical aspects of the computer
was designed into a newly constructed microcomputer labora-
tory. This thesis is the report of the evolution of that
laboratory and ccurse of instruction.

.

TABLE OF CONTESTS

I

r

I. INTBOEUCTION TO THE LABORATORY 8

A. RATIONALE FOR THE LABORATORY 8

B. ESTABLISHMENT OF THE LABORATORY 13

II. CONSTRUCTION OF THE EQUIPMENT AND THE ROOM 15

A. BACKGROUND 15

B. EVOLUTION OF THE LABORATORY 15

C. DESIGN AND CONSTRUCTION CONSIDERATIONS 17

1. Equipment and Software 19

2. Physical Layout of Room 19

3. Cooling, Heating, and Ventilation 20

4. Electrical Power Requirements 20

5. Werk Station Requirements 21

6. Cleaning 21

7. Security 21

D. REMARKS 22

III. INSTRUCTIONAL MATSBIAL DESIGN AND TESTING 23

A. METHOD 23

3. STYLE 23

C. TUTORIAL USER'S NEEDS 24

D. TUTORIAL DESCRIPTION 25

1. DL-1 Digi-Cesigner 25

2. Heathkit Digital Logic Training Device . . 26

3. Prcapt 80 26

4. SEK-85 27

5. Sybex Self-Study Tape Library 27

6. Heathkit H-9 Terminal 27

7. Heathkit H-89 Microcomputer . 28

E. TUTORIAL TESTING 28

J~~

i

(

P. TUTORIAL CONSIEERATIONS 29

17. LESSONS LEARNED FRCM THE INSTALLATION -- 30

A. FECBLEM AREAS ENCOUNTERED 30

B. PITFALLS TO BE AVOIDED 31

V. FUTURE ELANS FOB THE LABORATORY 33

A. SUEICRT OF COURSES AT THE SCHOOL 33

B. HARDWARE PLANS FOR THE LABORATORY 36

C. CONCLUSION 36

LIST OF REFERENCES 38

APPENDIX A: DC-1 DIGI-DESIGNER TUTORIAL UQ

APPENDIX E: BIATHKIT DIGITAL LOGIC TRAINING DEVICE

TUTORIAL 142

APPENDIX C: EFCHPT 80 TUTORIAL 165

APPENDIX D: SDK-85 TUTORIAL 233

APPENDIX E: SYBEX SELF-STUDY TAPE LIBRARY 257

APPENDIX F: EEATHKIT H-9 TERMINAL TUTORIAL 269

APPENDIX G: EEATHKIT H-89 MICROCOMPUTER TUTORIAL . . . 277

BIBLIOGRAPHY 293

INITIAL DISTRIBUTION LIST 295

c
6

i
LI SI OP FIGURES

2.1 HANHCUR ALLOCATION 18

{

c

(-4

1

I

f

I. IHTRODOCTICM JO JJE LABORATORY

A. B1TIOIAIE FOR THE LABORATORY

In 1972 Oliver flight identified a problem for executives

who knew too little about how computers work.

"What a great job the technicians have done in creating
a computer "mystique."...the computer technicians have
sold {the executive} a bill of goods that he must under-
stand hew the computer works... But what he really
needs re know about how the computer works is very
limited indeed, and when technicians create a "mystique'»
arcund the machine--a barrier fcr the manager—they not
only make hin dependent upon them, but they also seri-
ously impair his ability to make intelligent decisions
about the use of the computer." [Ref. 1]

flight's warning was that the executive should not try to

become a technician himself, but that he needs to know

enough about what the computer system could do and how it

does it tc make sound managerial decisions. This requires

some knowledge of the technical jargon used by specialists,

but net a full technical competency. At a minimum, he must

be able to overcome the mystique of the computer and under-

stand it as a management tcol.

Despite this warning that the executive must not be

surrounded by computer mystigue, the current stata of

affairs is such that many top executives are not always

fully able tc penetrate that mystique and make those intel-

ligent decisions. In a recent article Oebra Zahay indicated

that many businesses which are hiring graduates with Hasters

in Business Administration degrees are using them in data

processing functions, principally to improve communication

between technical and non-technical staff. This is a result

of the "shortage cf programmers and technical people who can

communicate with nontechnical staff." [Ref. 2]

I

Obviously, the inability of the executive to communicate

effectively with the techrical staff la tha computer opera-

tions area is an area of growing concern to -top management

executives. In cne of the latest textbooks on management of

information systems the author states

"The
service
depart•
ships w
special
technic
have ap
They sp
communi
however
such as
tivity.

complex
s} syst
ents re
jth the
ized in
al skil
propria
<=ak cf
cate a
, has a
sales

• C B€f

ities
sms h
sulti
user
ord

Is to

bits
mong
quit

growt
• 3]

of deve
as fcreed t
ng in a se
s of the.^r
er to harn
get the 1

developed t
, bytes.
each othe

e different
a, return o

loping I
he creatio
ries of st
service.

ess the v
cb done,
heir own 1
DOS, CICS
r. Gene
language,

n investme

S {inf
n of spe
rained r

arioüs n
The spe

anguage
, and
ral man
featuri

nt, and

crmation
cialized
elation-

IS has
ecessary
cialists
systems,
so on to
agement,
ng words
produc-

The writers of that statement do not. argue that the

language created by the technicians is to blame for the fact

that communication is poor between technicians and managers.

They term the language systems that have been developed

"appropriate." The fault for the lack of communication lies

partly with managers who cannot understand the most basic

vocabulary of computers and partly with technicians who

cannct understand the most basic vocabulary of management.

The education of business administrators in basic technical

vocabulary can be addressed by assigning »BAs to jobs in the

management of data processing operations as an entry-level

position, tut as Zahay points out, "{This practice} is often

a stepgap scluticn to the problem of communication between

functional areas and systems staff." [Bef. 4] It is

apparent that there is a problem of poor communication

between the ncn-EPP business manager and the computer scien-

tist and programmer.

The Association for Computing Machinery views the role

of the information systems specialist as a bridge between

these two diverse areas. One educator in IS said, "The

4-

[
information system designer {and} iitpiementer is a boundary
spanner and a change agent. Therefore, the organizational
knowledge should include c.n understanding of the typical
problems encountered by boundary spanners and change agents
and the ccnmcn concepts, strategies and tools required of
the individuals enacting such roles." [Ref. 5] In order for
the manager tc act as this boundary spanner, he must have a
working knowledge of the areas he is to span. In fact, the
&CH delineates the graduate of the recommended IS curriculum
thusly:

.»

•1« The Information Systems curriculum teaches informa-
tion system concepts and processes with the two contexts
of organizational functions and management knowledge and
technical information systems knowledge...
2. The Information Systems graduate is expected to work
within the environment of an organization and to
interact with bcth organizational functions and computer
technology.
3. In technical expertise, the Information systems
curriculum places substantial emphasis en the ability tc
develop an information system structure for an organiza-
tion and to design and implement applications."
[Ref. 6]

(

This is not tc imply that the technical expert need not be
mindful of the need to conmunicate with non-technical staff.
Indeed, the need for the technicians to be able to communi-
cate with lay persons has already been clearly identified
[Ref. 7]. However, the training of technicians to communi-
cate with the lay individual does not relieve management of
the responsibility of having some basic skill in the tech-
nical area, if only in the terminology. This training obvi-
ously need net be so technical as that of the technician,
but should te deep enough that the manager may reasonably
communicate with the technician and be able to evaluate and
hire a technically competent staff [Ref. 8]. Ideally this
training should be consistant between information system
specialists, ex problems will undoubtedly develop bcth

10

..

(

within and without the organization as the translators need
someone to translate between them as well.

In tha curriculum description for the Graduate Education
program the ACM called for "... knowledge of basic hardware
{and} software components of computer systems, and their
patterns of configuration [Ref. 9]. In the description of
the recommended course content, the ACM further specified
"Processor, meitory, input/cutput, mass storage, remote tran-
smission modules; function and possible realization of each"
were to be the subjects cf the Computer Systems course of
the curriculum [Hef. 10], Additionally, the ACM provided
this rationale for the inclusion of a course in computer
concepts in the curriculum, "It is important for the student
to possess a broad familiarity with fundamental concepts and
terminology associated with computer hardware systems and
operating systems." [Ref. 11]

The desire tc enable the information system manager to
be conversant with the technical language as well as the
financial language creates some unique problems for the
schools which cffer ar information systems curriculum. kt

the Naval Eostgraduate School, for instance, the students
have a variety of educational backgrounds, ranging from the
more technical degrees in computer science, physics, engi-
neering, etc., to the liberal arts degrees in such diverse
majors as psychology, English, etc. Seme of the students
have highly skilled financial backgrounds, including a few
with MBAs and many from the Supply Corps. Soms have a wide
experience in working with computers on a daily basis as a
result of previous tours cf duty in data processing centers
of various sizes. The challenge fcr the curriculum managers
is tc provide sufficient course work in both the financial
and managerial arenas as well as the technical information
on the functioning cf computers to provide the graduates
with at least the minimum skills called for by the ACM

11

±._

.

curriculum guidelines. This challenge is made more diffi-

cult by the requirement that the student officers be

returned tc ncn-scholastic duty as soon as possible. The

standard ccurse of instruction, then, must have the regui-

site coursework, but at such a level that the somewhat expe-

rienced student has a challenge and the novice is not left

behind.

At the Naval Postgraduate School the traditional

approach of classroom lectures has been used to provide the

courses which ccver the hardware and operating systems.

Only one of the courses normally in the Computer Systems

Management curriculum has a technical laboratory associated

with it: CS 2810, which is an elementary structured

programming course in which PASCAL is taught on an IBM 3033

as an adjunct to the structured programming concepts

[Bef. 12]. Ncne of the reguired courses has any practical

exposure tc the subject hardware or software, although seme

do offer exposure to development of software as a product of

a design program. The school does offer courses in other

curricula that can provide the information systems student

with this technical background. Due to scheduling

conflicts, however, it is not always practical for every

information systems student who wishes to include these

courses in his studies tc be able to do so.» In a similar

circumstance, where hardware concepts are taught in the

(

»The curriculum, .pres
four quarters in which h
quarter, and that elect
several predetermined su
Emphasis Areas (Ik) . Thi
military nature of the sc
sponsors of the curriculu
be met as well as the tr
a Masters Degree in Inf
wishes to take a course o
SA, it must be taken as a
a course in which the s
previous study or expsrie
tored to maintain acadea
circumstance is that the
non-traditicnal courses.

ently a
e may t
ive mus
bsets
s syst
hcol,
m have
adit ion
ormatio
utside
n overl
tudent
nee. V
ic inte
student

Hows the
ake one
t normall
of cours
em is dri
in that

education
al academ
n System
the ncrm

oad, or a
can rece
alidation
grity,

must ov

BlQcll
y come
e offe
ven so
the va
needs

ic rag
s.
al seq
s a re
ive 7
is ca

and th
erload

ical" student
ve course per

from one of
rings called
mewhat by the
rious warfare
which should

uirements for
If a student
uence for his
placement for
alilation for
refully moni-
e more usual
to move into

12

classrooa by lecture, Cook described the coaputer science
curriculum at Central Michigan university as having "i major
failing...the absence of a digital logic laboratory for the
course. The design problems and the operation of the
Arithaetic/Logic Unit and control unit could be aade auch
aore understandable to the student if such a laboratory were
available." [Bef. 13] It is therefore logical to decide
that the iipleaentaticn of a hands-on laboratory for logical
device training would be cf major benefit to the students in
an information science curriculua.

B. ISTABIISBBENT OF TBS 11BOBATOHY

In 1980 it was decided that the Adainistrative Science
Departaent, tfce departaent of the Naval Postgraduate School

responsible for adainistering the degree of Master of
Science in Information Systems, would install a microcom-
puter laboratory for the students and faculty of the scheel
to use for research. The opportunity was seen to incorpo-
rate into this laboratory a course of instruction in the
technical area that the faculty could use to suppleaent the
classrooa work and that the student could use to explore
further the technical aspects of coaputing and coaputing
equipaent. In addition the laboratory would provide the
student with the opportunity to worlc with aicrocoaputers and
desk-top coaputers. The laboratory would also support
thesis work by students as well as the faculty rssearch
taking place at the school.

The laboratory was envisaged as spanning the technolo-
gical levels froa the siaplest logic circuits to the most
coaplez aicroccaputing systea and local networks with peri-
pheral I/O and telecommunication eguipaant. The laboratory
was to have a coherent ccurse of instruction to assist the
student in learning as auch as he wished on each of the

13

.L-

t

(

technological levels. In addition, it was planned to incor-
porate sufficient equipment that ultimately the laboratory
could be used to simulate the functioning of a full computer
center and thus be used as a teaching aid in -he course for
computer center operations.

It was decided to supplement the users manuals -hat came
with the equipment of the laboratory with additional educa-
tional and training materials, principally because the
general quality of users manuals provided wixh the systems
was poor. It appeared that those manuals ware written with
the assumption that the user was to be knowlegeable of the
subject area as a prerequisite to using the manual. The
overall intent of the laboratory was that the novice student
would be able to learn the technical language and operations
without havinc tc decipher an intensely technical journal of
instructions. Additionally, the laboratory was unique to
the Naval Postgraduate School, and few texts were available
for self-paced werk of this kind. Therefore, the decision
was uade to create the texts in-house, using a team of
students tc produce them. The same team of text-writers was
also to manage the installation and construction of the
various computer systems that were to go la the laboratory.
This thesis is the report cf that development effort.

(

1H

L

i

<

(

II. S£J853SS£2Ifiä SS SäS tügMlB £M2 läl 1225

A. E1CKGBCQND

The basic groundwork for the Laboratory was initiated in

1980 when Professor M. Schneidewind proposed and had
approved the furdamental concept of a student and faculty
learning center. At that time the NPS computer center was
installing a new mainframe computer and would require all
available room in Ingerscll Hall as remote terminal sites.
In September cf 1982 the room originally chosen for the
instructional laboratory space was cleared of the terminals
and construction was started on the laboratory. The authors
were introduced to the project during the two months
preceding the construction phase and began by updating the
two year eld work request that had initiated the action.
The problems encountered and mistakes made during the
construction phase will be discussed in this chapter.

B. EYOLÖTI0N OF THE LABOBATOBT

During the development of the laboratory, the united

States Coast Guard offered to locate a multi-user microcom-

puter in the laboratory. In the interest of obtaining a

system with high order languages and application programs

installed, the Administrative Sciences department accepted

the offer. There was no delay in the development of the

laboratory as a result, however a re-alignment of goals and

objectives was required of the authors in order to accommo-

date the introduction of this additional system to the labo-

ratory. The authors were directed by Professor Schneidewini

to plan tb« physical placement of the Coast Guard system in

the front rcom of the two room laboratory. On 19 November

15

L

(

(

(

the Ccast Guard systaa was moved into the lab and placsd in
operation. Of the original 8 work stations present in the
front room, all but two were taken by the system, leaving
little space for other types of equipment.

The first piece of equipment received for the laboratory
was the Intel Frcapt-80 microprocessor design and training
device. One of the authors was assigned the tasks of
reviewing all the documentation accompanying the Prompt-80
and developing a user manual that would allow a computer
novice to begin self-paced education at the machine language
level.

The next equipment received was the Heathkit Digital
Logic Trainer (in an unassembled kit form) . The assignment
for cne of the authors was to assemble the kit and prepare a
user manual that would allow a computer novice to educate
himself on the digital electronics level of computers. The
same authcr received the Heathkit Digital Techniques self-
instruction course for review and evaluation.

The third author was assigned the tasks of reviewing a
series of pre-recorded cassette tapes prepared by SYBIX,
Inc, as a tutorial on microcomputers, interfacing techniques
and computer architecture, and preparing a synopsis on each
tape selected for the laboratory.

The abcve nentioned projects were parformed in parallel
with the construction of the room which began in August,
1982. By 21 October the tutorial on the Prompt-80 was
nearing completion, and by 6 November the Heathkit Digital
Logic Trainer was assembled and tested. The Prompt-80
manual was submitted tc Professor Schneidewind on 11
November fcr examination and recommendations. The tutorial
for the Heathkit Digital Logic Trainer was submitted on 25
November and by 29 November the Heathkit Digital Techniques
self instructional course had beer, thoroughly reviewed and
was returned tc Professor Schneidewind. The pra- recorded

16

U-

c
/

(

cassette tapes wer« reviewed and the synopsis prepared for
the laboratory by 15 December 19 82.

A second round of equipment construction was begun at
the end of December with the assembly of a Heathkit H-9
video terminal. A Heathkit H-25 dot matrix printer and H-89
computer with H-17 external disk drives followed in January.
This work was completed by one of the authors, and he began

writing introductory tutorials for these additional pieces
of equipment. Another of the authors was assigned the task

of writing a user's manual for the Intel SDK-85 microcom-
puter experimentation device. The third author began assem-
bling a series cf digital electronics experiments that could
be performed en the Heathkit Digital Logic Trainer or tha
E 5 L Instruments, Inc. "Eigi Designer" device.

By 28 February all construction and preliminary writing
was completed. The authors then began compilation of infor-
mation and data required tc include in this thesis.

It should be mentioned at this time that during the
academic quarter from January to »arch, 1983, the front room
of the laboratory was opened for student use, with the Coast
Guard multi-user system and three modem equipped terminals
installed to permit access to the ARPANET for the course on
telecommunications.

A brief summarization of events and cumulative time
required for each is listed as figure 2.1. The time summary
for the tutorial preparation is included in a later chapter.

(

C. CSSIG1 ASD CCBSTROCTICB COMSIDEHATIOIS

One prime consideration in the development of the labo-

ratory was to present a friendly, well defined setting for

anyone interested in learning about microcomputers and

digital electronics. The importance of a friendly aser atmo-

sphere cannot be over emphasized, particularly since most

17

u-

(
EVEHT
Collecting components

fcr experiments

MASHOURS

58

Interfacing equipment 3

Flanning, paperwork and
discussions with advisors 49

Monitoring of construction
progress 27

Total 142 hrs.

(

(

Figure 2.1 BAHBOUR ALLOCATION*

people facing unfamiliar equipment feel a certain level of
apprehension. With this goal in mind, the authors planned
for equipment that would provide a logical learning contin-
uity from the digital electronics level to higher level
languages and application programs.

At the outset of the project, the Naval Postgraduata
School already owned some of the eguipaent to be used, a
Heathkit H-8 computer, Heathkit H-9 terminal, an Intel
Prompt-80, and an Intel SDK-8 5 system design kit. The
authors requested that additional computer equipment be
logically related to this inventory. As a result a Heathkit
H-89 computer and external disk drives were ordered for the
laboratory. This choice provided the laboratory with a
contiguous line of equipment that was from the same family
of central processor units.

The seguence of events during the construction of the
laboratory and the equipment could have, at times, been
described as fraught with problems. This report should
assist the reader ..n developing and building an instruc-
tional laboratory by presenting some of the pitfalls encoun-
tered and considerations necessary for a successful
installation.

18

' »

(

(

(

The following sections «ill highlight thos9 items that
require planning and decisions based on the desired use of
the laboratory.

'« gguJEfent ajid Software

Although it would appear that equipment and software
selection Mould contain the bulk of decisions concerning a
project of this type, that is not necessarily the case. The
choice of software is, of course, very significant if a
particular application is important to the use of the lab.
Care should be taken to select software and hardware that
aeets all projected needs, is relatively easy to learn and
use, and is popular tc the extent that it has a good history
of use and maintenance.

2- Ehvsical Lag gut of Boom

In the design of a computer laboratory, there are
some specific considerations concerning the physical layout
of the rocm. In a laboratory like the one at the Naval
Postgraduate School, it will be necessary to allocate space
for computer workstations, peripheral devices such as prin-
ters and disk drives, laboratory equipment such as meters
and cscillcsccpes, digital training devices, and associated
documentation. Sufficient storage space for unused equipment
should alsc be provided. If the laboratory is supposed to
support several courses, as it does at NPS, there will be
different equipment required at different times, so large
storage cabinets should be included in the lab. The counter
tops for the werk stations should be designed to make
maximum use of available wall space. When laying out the
floor plan, it is important to remember that people need leg
room and elbcw room . A collision may occur if there are
adjacent werk stations located around an inside corner.

19

4--

(

(

One cf the most difficult decisions will be the
placement cf shared devices such as printers and plotters.
The work stations utilizing these devices will need a
reasonable path for the connecting cables. Another factor
for consideration is the expected traffic flow and possible
interference between doors, counters, and equipment.

3« Coding. He.ating. and ventilation

The rccm will contain electronic equipment, and
therefore adequate heating, cooling, and ventilation should
be provided. Each computer by itself will generate only a
small amount cf heat, but in the aggregate a room full of
equipment may become warm enough to cause damage to the
devices. Cse cf the largest scurces of heat will be the
number of people in the rccm. Twenty people in a small room
will have a definite effect on the room temperature.
Generally speaking, computers function better in a cooler
envircnment with low humidity. The trade-off to be consid-
ered is that people may net use the lab if they are uncom-
fortably ecld. The best scurce of required temperature and
humidity levels is the manufacturer's literature.

•• 3j,6ctrical Power. Beguirements

Most digital electronic equipment contains an
internal pewer supply and is designed to be plugged into a
standard 110-120 volt three pronged (grounded) outlet. For a
laboratory, at least two cutlets per work station should be
installed. Some computers provide auxiliary outlets to power
peripheral devices, but not all can supply the heavy power
reguirements of high current devices such as printers.. The
outlets should be located in a convenient location, keeping
in mind that »cst power cords extend from the rear of the
device. Another consideration for electrical power is that
computers ara sensitive to voltage spikes and fluctuations
that cccur en a random but frequent interval. There are

20

»-

i

(

(

filters available to suppress voltage spikes and constant
voltage transformers or uninteruptable power supplies to
protect against fluctuations.

5« IfilJS ?tation Requirements

Each workstation should have enough room for a CRT
display, a keyboard, a computer, and a printer or space for
a aodem and telephone. Since it may be unrealistic to fully
equip all stations, the temptation may be to reduce the
workstation space allocation in an attempt to save room. If
the work stations spaces are too small to move things
around, a serious degradation of flexibility can occur.

6. Cleaning

A small but significant problem of a computer labo-

ratory deals with routine cleaning. Methods should be

provided tc adequately remove waste paper and trash from the

lab. If the rcci is normally locked, an arrangement with the

cleaning service will have tc be made. Special cleaning

solvents and equipment are needed for CRT screens, computer

cases, and peripheral devices. Disk drives and other equip-

ment are extremely sensitive to smoke and dirt. It would be

a good idea to provide a whiteboard and felt tip markers

instead of a standard chalk board. No smoking signs should

be prominently displayed. Cleaning instructions are normally

included with each piece cf equipment.

7. Security

Security of a ccuputer laboratory falls into two
catagories. First, considerations must be aade concerning
the physical security of the equipment and software in tne
room. The UPS Instructional laboratory is protected with
cipher locks en th6 doors and keyed locks on the storage
cabinets. The ccabinations for the cipher locks are released

21

only to persons who read and sign a non-disclosure state-
ment. Secondly, the software disks for proprietary software

ar € issued in a similar manner, with an agreement not -co

copy proprietary software teing signed prior to issuance.

(

0. BEHAKKS

The seven topics discussed above were all significant

considerations in the development of the »PS Instructional

laboratory. Tbe list is by no Means intended tc be a conpre-

hensive indicator of all possible problems. The chapter on

lessens learned will discuss several problems encountered by

the authors in these areas.

22

L

{
III. mSTBOCTIOtUL BATEBIAL DBSIGM AMD TBSTIMG

t

Coring the formulation phase of the development of the

laboratory instructional materials, several areas of consid-

eration were evaluated. It was determined that due to the

variety of equipment incorporated into the lab, uniformity
in text style and instructional method should be a major

factor in the design of the instructional materials.

A. BETHOD

The two instructional methodologies considered for

implementation were Computer Aided Instruction (CAI), and

hard-copy, printed tutorials. The CAI method of instruction

is primarily used for direct institutional support. Typical

examples of CAI are Crill and Practice, Tutorials,

Simulation/Gaming, Inquiry/Dialogue, Information Retrieval,

and Problem Solving [Bef. 14]. CAI is accomplished

through interactive computer tutorial sessions and thus

requires the availability and use of a computer system. This

requirement, coupled with the goal of uniformity in method

and style, lead to the decision to utilize hard-copy,

printed tutorials for all instructional equipment used in

the laboratory. It was decided that printed tutorials would

provide greater access to the learning materials and would

allow greater mobility cf the tutorials for independent

stud j.

(

B. STYLE

Hhen approproiate for the equipment type, the primary

style used in designing the tutorials was an adaptation of

the '«Prompt and Response" style [Bef. 15]. This type of

23

{

I

(

instruction is designed tc prompt the reader to respond tc a
stimulus presented in a frame type format. As adapted for
use in this laboratory, the response is in the form of an
action taken by the reader, thus leading the reader through
the tutorials in a step-by-step manner. This instructional
style provides the reader with immediate feedback concerning
the correctness of the action taker. Additionally, this
style allows the reader tc skip lessons previously covered
or undesired, and to review any material covered which is
unclear.

C. TUTORIAL USER'S NEEDS

The first step in designing the tutorials was to

consider the qualifications and background of the users of
the laboratory. Their ability level and background in elec-
tronics, mathematics, and computer systems were evaluated so
as to design instructional materials best suited to the
users' needs and to supplement education received through
other courses taken at the Naval Postgraduate School.
3ecause the tutorials were being written primarily for grad-
uate students the authors could assume a high level of scho-
lastic and \<=rbal ability, relatively high motivation
(participation in this lab may be voluntary), and varying
acquaintance with the terminology and concepts of elec-
tronics, matteaatics, logic design, and microcomputer
theory. There are no prerequisites for the material
presented in this lab. It was designed to be studied inde-
pendently or in conjunction with courses such as CS28 10,
CS3010, CS3030, CS3200, IS2000, IS3100, IS4183, and others.

24

D. TÖTOHIII DBSC1IPTIOH

Eefore the authours cculd begin work on the tut-orial

manuals, they had to learn the equipment and its operations

sufficiently well to be able to teach it to others. This

task was made more difficult by the poor manuals that accom-

panied some of the equipment. Having mastered the equip-

ment, the authors then had to become proficient at the

creation cf programmed texts, and combine the machine skills

with the writing skills. The final stage of the labor was

the actual creation of the tutorials. A total of 340

mar.hcurs were spent on the research and preparation of the 7

tutorial sets for use on the laboratory equipment. A brief

description of each tutorial set is listed below.

'« H£zl Ciqi-Designe;

The Digi-Designer tutorial contains a functional and

physical description of the equipment and its use in the

design of legic circuits. Included in the tutorial are the

following topics:

a. Binary Mathematics

The basic concepts of binary addition, subtraction, and

multiplication is provided for those readers who desire to
review this topic.

b. Lcgic Design

A review of the concepts cf logic design utilizing AND, OR,

XOR, and NAND gates is provided.

c. Karnaugh Maps

The use and techniques cf Karnaugh mapping as a tool for

reducing Ecolean equations are discussed.

(

25

(

d. Laboratory Experiments

Several laboratory experiments are included to famili'arize
the reader with the Dig?.-Designer and the physical concepts
of logic design.

2. Heath kit .Digital logic Training Device

The tutorial for the Heathkit Digital Logic Training
Device was written in the "Prompt and Response" style
discussed earlier and contains three sections. Part one of
the tutorial is a functional and physical description of the
digital console. Part two contains experiments designed to
demonstrate correct procedures for operation of the digital
console. Part three contains experiments utilizing logic
gares. These experiments are designed to provide a basic
introduction to logic design concepts and digital logic
"breadboarding".

3. £icmc.t 8 0

The tutorial for the Prompt 80 computer is a

programmed text written in the "Prompt and Response" linear

style for ease of use with the computer. Section one of the

manual contains a physical and functional description of the

Prompt 80 console and peripheral ports. Section two provides

instruction en modifying the registers and memory and intro-

duces the reader to the task of entering a machine language

program into the computer. In section three, this concept is

expanded ty shewing the reader how to write a machine

language program when given an algorithm. Section four

contains instruction on the advanced functions of the Prompt

80, reading and writing to a PROM, debugging machine

language programs, and seme advanced concepts in machine

language programming.

26

t

(

(

4. S.Dj£85

The tutorial for the SDK-85 was written in" the

"Prompt and Response" style and contains three sections.
Part one is a general description of the SDK-85 computer.
Part two contains a component-by-component functional
description of the SDK-85. Part three contains assembly
language sample programs and explanations of the additional
capabilities provided by the 8085 CPU in comparison to the
8080 CPU used in the Prompt 80.

5. Sjfbjx Self-Study lape Library

Three courses from the Sybex tape library were

reviewed and selected for inclusion in the laboratory. The
courses selected were:

SE3 + Military Microprocessor Systems
SB5 - Bit Slice
SE7 - Microprocessor Interfacing Techniques

The manual for the tape library contains a descrip-
tion cf the library system and, for each course, an outline
describing the ccurse goal, the topics, and the material
covered within thoss topics. The brief synopsis of each
course allows the reader to review the material contained in
the courses and to determine the applicability of the
courses to the reader's abilities and field of study.

6« Hf.ath.kit lh9 Terminal

The manual for the Heathkit H-9 terminal explains

the effects of each of the control keys of the terminal and
describes the functioning cf the terminal. In addition, the
user is taker, through a "Prompt and Response" tutorial
damonstrating the procedure to utilize the H-9 (via a modem)
as a remote terminal for the IBM 3033 computer system
located at the MES W. R. Church Computer Center.

27

(

(

(

7« 9§§thkät S0.8S Hiciccomputer

The aanual for the Heathkit H-89 Hicroco»pater

explains the general outline of the computer. It describes
the steps necessary to boot the CP/H operating system. It
also gives a very brief overview of the imbedded commands of
CP/H, the utility programs that came with CP/H and the
working of the function keys of CP/H as installed in the
H-89. No applications software is described in this manual,
as that is left to the user to learn. The manufacturer
manuals on the interfaces, monitors and other specific elec-
tronic issues are available for reference. The style of the
tutorial is traditional text.

E. T0TOBI1L TESTING

The completed tutorials were tested by a member of the

faculty, members of the project design team, and selected
"non-technical" students cf the Naval Postgraduate Schcol
The experience level of the avaluators ranged from readers
with little or no knowledge of microcomputer systems to
those who were highly experienced in the concepts covered in
the laboratory. During the testing, weaknesses noted in the
tutorials were evaluated and the tutorials were modified for
improvement and re-evaluated. Both experienced and inexperi-
enced ^valuators wera able to complete the tutorials with
little difficulty. The inexperienced evaluators were gener-
ally impressed that the tutorials were not written in a
highly technical language, thus providing a better concep-
tual understanding for them. It was judged by these evalua-

tors that the laboratory could provide a useful and
worthwhile learning experience.

28

t
P. TUTORIAL CCHSIDEHATIOHS

The authors found that one of the most difficult tasks

was to insure that all the tutorials «ere consistent for

style and format. With three authors and seven different

•anuals it was not a trivial task to make then so. The

authcrs attempted to keep some consistency by proofreading

each other's work, using conferences to decide format policy

and through intense communications. This sharing of the

labor and talent made it possible to achieve the consistency
demonstrated in the appendices.

(
29

-L-

{
IV.. llSSOäS iSigSED Oöfl ISS IMSTALLATION

A. EBOBLEH ABIAS ENCCÖHTEBED

(

In reviewing the original werk requests and discussing

the initial project with the sponsor, the authors discovered

several items that had net been originally considered in

those requests, as well as areas in which technological

changes had sade the plans obsolete. For example, the ccun-

tartcp height for the laboratory as specified was too high

for comfortable typing for long periods. In addition, there

was no provision made for storage of materials in the labo-

ratory, nor fcr security cf the more pilferable items of the

laboratory. The laboratory had been designed to be parti-

tioned inte twe icoms. -Lcckable cabinets and cipher locks

on both the inner and cuter doors were also provided.

Although this change was made late in the daveiopment cycle,

and was made tc plans that had been approved for two years,

the Public Morks Department was able to respond to the needs

and provide the facility as desired. The division of the

room into twe work areas complicated the situation by

forcing a change in the ventilation system of the area to

provide exhaust and inflow to both areas. Again, the

respense cf Public Works nas gratifying.

The enthusiastic response of Public «forks to the

changing requirements was not entirely without pitfalls.

Some problems developed in the actual »xecution of the

design cf the cabinets and ccuntertops. The authors were

able to correct the communications failures by personal

intervention, and the ultimate product was most suitable for

the purpose.

(
30

4~

(

In general, the difficulties faced in the production

9ffort of tre physical facility all steamed from poor commu-

nication on the parts of both the transmitting individual

and the receiving individual. In those areas where communi-

cation was clear and effective, no delays or errors were

made. Once again, communications have proven to be critical

in program development. Also, the authors appreciate the

fact thano cciplex project can be implemented without some

degree of uncertainty and ambiguity. That is, some aspects

must te learned by actually forging ahead, doing the werk

and obtaining experience. Hindsight then allows one to

state how the project could have been done "perfectly".

(

B. PITFALLS TC EE ATOIDEC

It is impossible to rigidly define the areas in which
any project will experience delays and failures, principally

because the cenditiors in which the project is undertaken
will be unique. It is, however, possible to identify the
general areas in which close personal supervision will help
avoid some of the pitfalls and failures. In a most general
way, the communications irentioned above apply to all of the
areas in which failures occur.

Communications failures can occur between any of the
elements of the design and production team: the design
supervisor, his workers, the supervisor of the producing
workers, and the actual technicial staff performing the
physical werk. Failures at the junction of design super-
visor and his workers leads to mis-designed or inapprcpri-
atly designed plans. Pailures at the junction of design and
production teams can lead to incorrectly followed plans cr
imprcperly drawn plans followed to the letter. Failures
between production supervisors and their workers results in
imprcperly installed facilities or delays in installation.

31

**r- J

{

(

4

32

It is not possible tc overemphasize the need for accurate,
timely and clearly understood communications between ail
members of the team.

Another area of concern for the designer of a similar
laboratory must be the ccmpatability of the planned equip-
ment. In the UPS Instructional Laboratory the original plan
was to use the Heathkit H-9 Terminal both with the H-8
computer and as an additional terminal for ARPANET and the
IBM 3033 at NFS. Unfortunately, the design of the H-9
terminal makes that impossible, in that the terminal has no
capability for lower case characters and if a lower case
ASCII code is received, the terminal displays a control
character in its place. This discrepancy was discovered
when the teriinal was first used on the ARPANET, and has
made the terninal less attractive than it might otherwise
have been. designers of laboratories similar to this cne
should carefully screen all hardware for full compatability,
including the obtaining cf manuals in advance, if that is
what is reguired to investigate fully the capabilities and
limitations cf a machine.

(

(

1. FÖTÖIIE £iijl§ POH THE LABORATORY

A. SUPPORT GF COURSES AT THE SCHOOL

There are tue areas of concern for the immediate futare

of the instructional laboratory: the use of the laboratory

and the eguipsent to be added to the laboratory. The first

issue to be discussed is the future use of the laboratory.

It is the intention of the school to increase the usage

of the laboratory in direct support of classvorlc in both the

Information Systems course area and in tha Computer Science

course area. In particular there are seven courses in which

the laboratory can be made an integral part of the course-

work and to which the laboratory represents a significant

improvement in facilities. Each of these courses will bs

discussed in detail below. It is recognizad that the use of

a physically snail laboratory to assist in teaching classes

with sometimes as many as HO students or more may be fraught

with problems cf crowding and scheduling clashes. However,

the fact that the laboratory is available to the user

twenty-four hours a day, seven days a week, all year long,

significantly reduces the problem of crowding and scheduling

to a lesser problem of having some users come to the labora-

tory at unccnventional hours. As discussed in the initial

chapter, the motivation of the students at NPS is high, and

the «aturity cf the students makes it possible to accept the

smallness cf the laboratory and still use it as a primary

taaching aid.

The lowest level course to be supported in the labora-

tory is IS 2000, Introduction to Computer Management. The

MPS Catalogue [Bef. 12] states that this course covers the

elementary hardware and software concepts of Computer

33

I

(

(

MaEagement. In IS 2000 the laboratory can be used to intro-

duce to the novice student the various terns of - data

processing, with a chance for the student to actually see

and use computers for perhaps the first tine. The equipment

in the laboratory that night be used very well in this

course includes the Digi-designer, the SDK-85, the Prompt

80, the Heath 8 micrcoaputer, and the Heath 89 microcom-

puter. Although the instructional material for these

devices may well be mere advanced than the student needs at

this level, the devices can be used to introduce the

concepts of registers, memory, storage devices and media,

hexidecimal, octal, and binary arithmetic, busses, CPU,

»chips», etc.

The IS 3100 course. Survey of Contemporary Computer

Systems, has as part of its course coverage the comparison

of microcomputers and their price and performance character-

istics, with the Heath 89 as a demonstration of a rela-

tively advanced 8-bit machine and the OSCG system as an

example of a typical 16-bit system, the laboratory can

demonstrate the change in performance and price which

occurs across this range of computers.

IS 32 20, Computer Center. Operations. was designed to be

taught using the M. R. Church Computer Center as a training

site for the student to actually manage a large system.

However, with the recent installation of the new IBH 3033

equipment a* the Center, that arrangement has been elimi-

nated. In its place, the laboratory can be used to simulate

a large computer center. All the roles in a typical large

center can be emulated in the laboratory, and problems

placed before the students to solve pertaining to allocation

of assets and priorities, production scheduing and control,

operational procedures, and computer performance evaluation

can all be taught through simulation. The use of the labo-

ratory in this way is virtually open-ended. Its success

34

i_

(

(

depends entirely on the response of the students and the
inventiveness of the simulation designers.

Application c| Database Management, IS 4 183, can be
assisted in this labcratcry in both the use of microcom-
puting in database management and in the reaching of rela-
tional database management systems. The laboratory has
COMDCB (tm) relational data base management software avai-
lable for the student to experiment with and actually see a
database system at werk. It is possible that problems in
database design cculd be given with the assets of the labo-
ratory available for the student to use in their solution.
In addition, rele playing could also be used to demonstrate
to the students the functions of a database administrator in
a simulation environment.

The final Information Systems course to be supported
directly is IS 4185, Computer-based information Systems. In
this course the student is presently required to prepare a
small decision support system for part of the course credit.
The laboratory can be used as a resource for that project,
as well as a demonstration site for microcomputer-based
decision support and management information systems.

In the Ccmpter Science course area, there are two
courses that the laboratory could support. One of these is
CS 3010, Computing Devices and Systems. In this course the
student is taught computing at the bits and bytes level,
with emphasis en the hardware and the interconnections
between hardware, rather than on software. The
Digi-desigcer, logic trainer and both the Prompt 80 and the
SDK-85 will be significant teaching tools in this course.
The lower level devices can be used to teach the concepts of
logical circuits, while the SDK-85 and Prompt 80 can be used
to demonstrate the effect of clock pulses, timing circuits,
and data transfers. In the latter part of the course, the
Heath 89 can be used in the final integration of the logical

35

4-

i training atd tc help the student see that the principles cf

the lcwer machines apply equally to the higher.
Finally, CS 5020, Software Design, can use the labora-

tory as an asset with high level languages such as FORTRAN,
COBOL, etc., tc assist the student in the design of software
that meets the currently accepted criteria of modularity,
changeability, etc.

B. HARDWARE ELANS FOB THE LABORATORY

Host cf the initial equipment has already been installed

in the laboratory. However, several pieces of equipment

will be ordered, or are at NPS and not installed. These

include a Heath 8 microcomputer to be used with the Heath 9

terminal, an IEH Eerscnal Computer, an Apple microcomputer,

a microcomputer development system, a small local network

and a micrcccmputer interfacing system. la addition, mere

software is planned, including some of the more recently

developed alsctronic spreadsheets, some other database

management systeus and perhaps different oparating systems,

with the state cf the art in microcomputers in such flux,

the present plans are to remain flexible, and to add to the

laboratory whatever hardware and software seems to be

gaining acceptability in the Department of Defense (DoD) as

a whele, with a view tc keeping the student and faculty

abreast of these developments.

(

C. CONCLUSION

The laboratory has been a long time in development, and

during its development technological changes have provided

new opportunities for upgrading its technical capabilities.

However, now that the laboratory is a reality, it will be

maintained with the latest in hardware and software, and

should be ussd by the faculty and students of NPS for

36

u

(
research tc benefit the DcC as a whole. That use alone will
justify its eaistance, but the more important use of the
laboratory is in the instructional node, to reduce the
mystique cf ccuputers mentioned in Chapter 1, and to provide
to the DoE Information Systems specialists who can bridge
the communications gap between the technician and the
manager.

(

37

L

LIST CF REFERENCES

1.

2.

3.

Might, C, The Executive's Mew Co a pater—Six Ke^s to
Syjtjms SucceffT P• if. IfIfofT^fTI*

Zahay, D., "Carving a Systems Niche", Datamation,
Volume 27, Number 2, pp. 100-104, February, "TOST

Cash, J. I. Jr., McFarlan, F. W., and McKenny, J. L.,
'stems Management: Text and
•~nc--19FI—a

corporate Information Sys^
cT|g§7""8xcharc[~D. ifwir., il

4. Zahay, F. 100.

5. Couger, J. Daniel, "Improving the Effectiveness cf
Campus Recruiting", Computing Newsletter for
Instructors of Data Processing, Volume xv, so. 8, p.
T7-5|fII7 19S2. *

6.

7.

8.

Ibid., F. 4.

Sein, ». J., "On the Need for Students to Present
Technical Material tc Non-technical Audiences in a
Computer Science Curriculum". SIGSCE 30LLETIN, Volume
14, Number 1, pp. 97-101, February, 17F2

Lucas, H. C. Jr., "Preparing Executives for Corporate
Informaticr Management", Infosystems, pp. 114-117,
October, 1S79.

9. Association for Confuting Machinery, ACM Recommended
Curricula for. Computer Science ani "" Information
Processing Proqrams in Colleges alTct ' OnlvefsitiesT
I21li3H!!'7 19"3T, pT-STT- *~ —

10. Ibid., F« 77-

11. Ibid., F« 5.

12. Naval Postgraduate School
Postgraduate School, 1982-83.

Catalogue, Naval

13. Cook B. N • , "I Hardware Course for a Software
Curriculum", SIGSCE BULLETIN, Volume 13, cumber 2.,
pp. 17-22, Jun57~T7llT

(

38

4-

i U. ailner, Stuart D., "Ho« To Make The Sight Decisions
About Hicrccoaputers". Instructional innovator, v. 25,
no. 6, pp. 12-19, SeptemFer"*TJ5TJ, p. T3.

15. Markle, Susan M., Good Frames and Bad:
Frame Writing . New York: Wiley, 1964.

& Grammar For

(

39

L

m

1EPENDIX A

DD-1 DIGI-EESIGNER TUTORIAL

**

#*

******* *************** ******
****************** **********

INSTSOCTICNAL LABORATORr

DD-1 EIGI-DESIGNER:

LOGIC CIRCUIT

DESIGN METHODOLOGIES

****************** **********

r
no

(

TABLE OP COITEITS

Section page

1. DD-1 DIGI-DESIGNER 3

INTFODUCTION 3
DD-1 DESCRIPTION 3
SK-10 SOCKET DESCRIPTION <»
MANUAL DESCRIPTION 4
GENERAL LABORATORY INSTRUCTIONS 5
Eauipment Inventory For Digi-Designer Lab

* EXPERIMENTS 6

2. BINARY MATHEHATICS—TWO'S COHPLEMENT ARITHMETIC . . 7

BINARY ADDITION 9
EINARY SUBTRACTION 11
EINARY HOLTIPLICATION 11

3. LOGIC DESIGN 12

INTRODUCTION 12
SWITCHING ALGEBRA 12
SWITCHING FUNCTIONS 15
LCGIC SPECIFICATIONS 19
IMPLEMENTATION OF A LOGIC OR SWITCHING FUNCTION . 20

THE SUM-OF-PRODÜCTS FORM OF THE LOGIC FUNCTION 20
Ittplenentation of the Sum-of-Products Logic

FUNCTION 22
NAND GATE IMPLEMENTATION 23

Inpleaentation of the Product-of-Surns Logic
FUNCTION 26

NOR GATE IMPLEMENTATION 27
ANSWERS TO PFOBLENS 29

U. KARNAUGH HAPS 39

5. I1TBOD0CTION TO FLIP-FLOPS »6

6. LABCEATOBY EXPEBIBENT #1 51

USE OF THE DIGI-DESIGNER 51
LOGIC SWITCHES AND LAMP MONITORS 53
PULSERS 53
CLOCK 53

THE INTEGRATED CIRCOITS 53
THE AND GATE 55

A 3-INPUT AND GATE 57
THE OR GATE 58

A 3-INPUT OR GATE 60
THE NAND GATE 61
THE NOR GATE 62
INVERTERS 62
AN OPTIONAL DESIGN PROBLEM 63

7. LABORATORY EXPERIMENT #2 64

(

(

THE EXCLUSIVE-OR GATE 65
THE HALF-ADDER 68
THE FULL-ADDER 70
OPTIONAL FULL-ADDER EXERCISE 71

• 1

8.

9.

10.

(

11.

12.

13.

IJBCBATORY EXPBEIMENT #3 72

THE RS LATCH 73
THE RS LATCH WITH ENABLE » . 75

CLOCKED RS LATCH 76
TBE D-TYPE FLIP-FLOP 77

THE 7tt7U D-TYPE FLIP-FLOP 78
SCBE APPLICATIONS OF D-TYPE FLIP-FLOPS 78

SERIAL-LOAD, LEFT-SHIFT REGISTER 78
A RING COUNTER 79
A PARALLEL-LOAD, LEFT-SHIFT REGISTER 80

LABORATORY EXPBEIBENT «4 81

THE HASTER/SLAYE CONFIGURATION 82
THE HASTER/SLAVE RS LATCH 83

THE JK FLIP-FLOP 85
THE DUAL JK FLIP-FLOP 87

ASYNCHRONOUS COUNTERS 87
THE BINARY RIPPLE UP-COUNTER 88
THE BINARY RIPPLE-DOWN COUNTER 89
THE RIPPLE UP/DOWN COUNTER 89

LAEORATORY EXPERIMENT *5 91

ASYNCHRONOUS COUNTERS (CONCLUDED) 91
THE RIPPLE BCD DECADE COUNTER 91
THE DECADE COUNTER (CONTINUED AND OPTIONAL) . 93

SYNCHRONOUS COUNTERS 93
THE SYNCHBCNOUS EINARY UP-COUNTER 94
The Synchronous Binary Up-coantsr with Ripple

CARRY :. . . 9H
THE SYNCHFCNOUS DOWN-COUNTER /OPTIONAL) ... 95
A MODULO-3 SYNCHRONOUS UP-COUNTER 95
A MODULO-6 COUNTER 96
A HODULO-12 COUNTER (OPTIONAL) 97
A MODULO-5 COUNTER (OPTIONAL) 98

ABBREVIATIONS 109

DEFINITIONS 100

TABLE OF OECIHAI MULTIPLES AND SOBBULTIPLES 101

(

U2

.

Section 1

DE-1 DIGI-DESIGNSH

1.1 I»3JO£OCIIOg
This series of instruction is designed to teach the

reader to understand and to design logic circuits utilizing
the DE-1 Digi-Designer and logic components. A review of the
basic matte mat ics requirements is also provided.

I

1*2 Mzl SJSCRi£TJCK
The DC-1 Digi-Designer, produced by E & L Instruments

Incorporated, is a complete digital circuit design instru-
ment that will meet your requirements for digital circuit
design laboratory experiments. It will handle both
Integrated Circuit (IC) and discrete components without
soldering: connections are made using any 22 gage insulated
wire. The unit includes a regulated 5 volt (•5V) direct
current power supply, a selectable frequency clock (pulse
generator), dual bcunce-free pushbuttons (pulsers), four
switches for applying voltage or ground as required, fcur
Light Emitting Diode (LED) logic lamp monitors, and the SK10
universal component sccket.

(

43

.

(

(

I

1.3 SlzlS 5QCKU DESCRIPTION
The SK10 sockst is basically a matrix of 61 pairs of

common contacts (5 per strip) arranged symmetrically;
combined with 8 buss strips running along the length cf the
socket (40 contacts per strip). The socket allows the user
to insert all electronic components required for the experi-
ments with lead diameters up to 20 gage wire. For very
large components, the E & L BP2" adapter pins, which accept
leads up to 16 gage wire, should be used. When inserting DIP
ICs, be certain to preset the leads at the correct spacing.
Insert cne side partially in, then roll the second set of
leads into the other side , then press squarely down seating
the IC properly.

1.4 §AgO!£ DESCRIPTION
This manual is primarily an adaptation of the notes and

labs for the Hewlett Packard HP 5035T Logic Lab as taught in
the EE-2810 course at UPS. The manual contains some useful
review information en binary mathematics, logic design,
Karnaugh Maps, theory behind flip-flop circuits, and some
specification sheets for TIL ICs. Following the review
information, yca will find five laboratory experiments that
should prove helpful in making use of the Digi-Designer to
conveniently design, assemble, and test relatively complex
circuits, without soldering, and in only a few minutes. It
should be noted that since the advent of large scale inte-
gration, the types cf design involved in these experiments
are not the main cencern cf computer system designers;
however, these experiments can be very useful in learning
the basic concepts involved in logical and digital circuit
design.

4<4

A»

{
1.5 S1USÜ LABOBiTCBT INSTBOCTIOHS

If you desire to sake notes of experimental results cr to

answer the questions contained within the experiments,

please obtain a copy of the experiment you wish to perform.

DO NOT]JEITE ON TfiS fAGES WITHIN THIS HANCJAL!

Ee sure tc inventory all of the Digi-Designer equipment when

checking the equipment in or out. An inventory sheet and the

components necessary for completing the experiments are

contained in this manual following the introduction.

(
U5

L

{
1.6 SÄSIEISfii INTEHTOBY FOB DIG^-DESIGHER LAB EXP.EBIHENTS

(

QUANTITY ITEH

1 DD-11 DIGI DESIGNEB

1 MANUAL

2 7400 QUAD 2-INPUT POSITIVE NAND GATES

2 7402 QUAD 2-INFUT POSITIVE NOR GATES

2 7408 QUAD 2-INPUT POSITIVE AND GATES

2 7432 QUAD 2-INPUT POSITIVE OH GATES

1 7404 HEX INVERTER

1 7466 QOAD 2-INPUT POSITIVE XOR GATE

2 7483 DUAL JK MASTER/SLAVE FLIP-FLOPS

2 7474 DUAL D TYPE EDGE TRIGGERED FLIP-FLOPS

1 74 11 TRIPLE 3-INPUT POSITIVE AND GATE

1 7420 DUAL 4-INPUT NAND GATE

1 74«2 BCD-TO-DECIMAL DECODER DRIVER

1 7482 2-BIT BINARY FULL-ADDER

10 330 OHM RESISTORS (1/4 WATT)

2 ALLIGATOR CLIP JUMPER LEADS

1 IC EXTRACTOR CLIP

ASSORTED PIECES #22 WIRE

46

(

(

(

Section 2

BIUABI MATHEMATICS — TWO'S COMPLEMENT ARITHMETIC

Por purposes of the following example, we will use a

register length of four bits. Three bits are necessary to

represent the numbers zero through seven in binary for» and

the additional bit is used to represent the sign of the

number, whether negative or positive. The left-most digit

is the most significant digit (MSD) and the right-most digit

is the least significant digit (LSD) .

Most Significant Digit<

(MSD) >| Al| A2J A3

->Least Significant Digit

< (LSD) A4

2 1
weights > 2 2 2 2

The binary representation for -8 through + 7 is as follows:

7

6
5
4
3

2
1

0

-1

-2

-3

-4

-5

-6

-7

-8

0111

3110

0101

Q100

0011

0010

0001

0000

1111

1110

1101

1100

1011

1010

1001

1000

47

{
3

Notice that all negative numbers have a MSD of value 1.

This bit is known as the sign bit.

Note also, that k * (-4) • 0.

For exaaple. 6

• (-6)

0110

• 1010

0 1 < 0000

In this case, the 1 carried out of the register is lost

leaving 0000 as the (correct) result of the calculation.

3
The largest possible positive nuaber is 0111 =2-1

(in general, 2 -1, where k is the register length). The

3
negative number with the greatest magnitude is 1000 = -2

(k-1)
(in general, - (2 -)) .

It is easy to see, by example, that to complement a

binary number (i.e. to change it's sign) we have only to
complement every bit (four in the example above), and add
one to the result. Fcr example:

6 = 0110
-6 = -0110 = (1001 • 0001) = 1010

where 1001 is the bit by bit complement.

The result is called the two' 5 complemen-. (The bit-by-bit

compleaent is called the gne's complement.) The process
for foruing either cne's or two's complements is easily
implemented in computer hardware.

(
48

4

i 2.1 BI81SI ifiDSISl

Two binary numbers are added (as in the above example)

just as one would add decinal aunbers, except that we use
the binary "addition tables".

BIMARY ADDITION TABLES

0 0 11

IS id ±o ii
0 1 1 10

However, because of the finite (4-bit) register length,

there are five cases we must consider. Illustrations of the

five cases are given on the following page.

(

(
49

yt- mm - - - *•

10

t

(

(a) A, B > 0; <A*fi)<
3

2 -1 (b) A,3 > 0;
3

(A + B) > 2 -1

3 0011 3 0011

• 2 • 0010 • 6 • 0110

5 0101 9 1001

|

Overflew

(c) A > 0; B < 0

3 0011

• (-6) +10 10

-3 1101

Overflow cannot occur
when A and B have
opposite signs.

(d) A, B < 0; (A • B) > -2

-3 1101

•(-2) +1110

-5 f<— 1011

Carry-out is lost;
4-bit answer is
correct.

(e) A,3 < 0; (A + B) < -2
-3 1101

• (-6) 0010

-9 1< 0111

Carry-out is lest;
Overflew condition;
Ccitpare with (d).

Ciearly cases (b) and (e) lead to erroneous 4-bit answers.

He say that overfjLow has occurred. Computer hardware (a
logic circuit) »ust te used to detect this condition.

50

I

(

11

2.2 SUSJSI SDBIBACTIOH

Tc compute A - B we actually calculate A • (-B) . Xh%t is,

we take the 2* s coaplement of B and then aid. The addition

hardware is unchanged — including the overflow indicator.

(

(

2.3 BI£*BI HOLUPLICATIOH

One method for accomplishing multiplication could te by

repeated addition. This method would be very slow for large

numbers. An alternative is to use the shift-and-add-siethcd.

For example, consider the unsigned binary multiplication of

the decinal problem 11 x 13 • 143. The binary representation

for 11, 13, & 143 is 1011, 1101, & 10001111 respectively.

The multiplication is performed as follows:

1011=A

X 1101=B

1011

0000

1011

1011

10001111

Set memory cell for C equal to zero

B = 1, so add A to C (C previously zero)
0

B = 0, so shift A but don't add to c

B * 1, so shift A and add to C
2

B = 1, so shift A and add to C
3

The product is now in memory cell for C

we can detect a 1 (or a 0) in each successive digit of B

by ANDing B with a shifting BASK. Thus,

E

nöT
1101

1 101

1101

MASK

"ÖÖÖ1

0010

0100

1000

0, so B = 1
0

= 0, so 3 * 0
1

0, so B = 1
2

0, so B = 1
3

51

Initial mask = 0001

»ask shifted left
Mask shifted again
And again

4-

Section 3

LOGIC DES IG H

3.1 IHTEODOCTIOH

Our objective is to dove lop procedures for the design of

logic networks which will perform specified logical tasks
(e.g. tc turn on a light in your home from either of two
switches).

3.2 S122CHIHG ÜGBJBA

The tasis for such design is Boolean algebra (1847),
which was applied tc switching circuits in 1938. You will

already appreciate, fcr example, that

Input
I

Output
—

T7T Z=X*Y

I o 0 0

0 1 1

1 0 1

I 1
I — —

1
 ,.

1

T-* ,(Tu>u

(

all represent "lcgical addition" or the "OR switching opera-
tion". (An open switch is a "0"; a closed switch is a "1".)

So our first task is to postulate the properties of

§SilSJji33 algebra (which is one possible Boolean algebra) .

52

B •«•

13

We postulate that each variable can take only two values, 0
cr 1, and that the fundamental operations are negation,
logical sun, and xhe logical product.

(

—— -— r—_ T

NEGATION LOGICAL SÖH LOGICAL PRODUCT

X X X Y Z=X*Y x y Z=X»Y

I

0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0

1 0 1 1 0 0

1 1 1 1 1 1

 , L. — J I j

(

53

i

i
Fro« these postulates the following

proven:

1 • X * 1

0 • X = 0

0 • X * X

1 • X » X

X • X = X

X • X = X

X+I = X • X = 1

X»X = X • X = 0

1U

theorems nay be

X

I • Y

X • Y

X • (Y • Z)

X • (Y • Z)

X • (X • Y)

X • (X • Y)

X • (Y • Z)

(X + Y)« (X • Z)

X

Y • X

Y • X

(X • Y) • Z

(X • Y) • Z

X

X

X • Y • X • Z

X • Y • Z

X* (X • Y) • X • Y

X« (X • Y) » X • Y

(1)

(2)

<3)

r*i

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(,15)

(16)

(17)

(18)

(19)

(

54

15

i Problem J
Use truth tables and the postulates to prove

(i) Theorea (1) above,

(ii) Theorem (7) above,

(iii) Theorea (14) above,

(iv) Theorem (17) above.

Problem 2

Show the switch arrangeaent corresponding to:
<i) X • Y (Hint: See the diagram for X*Y above.)

(ii) 1 • X («hat switch position corresponds to 1 ?)

(iii) X • X.

Problen 3

use switch diagrams tc show that X*(X«Y)=X

Finally we can list two theorems due to OeHorgan:

X • Y = X • Y (2 0)

X • Y = X • Y (21)

These too may be proved with the help of truth tables,

are easily extended tc more variables; e.g.

They

X*Y*Z»X»Y«Z.

3.3 SWITCHING FORCTIOHS

Consider the statement.

(

P » ABC • A(B • C) • A

He say that P is a function of the three variables A, B,

and C. (A, B, and C are "input" or "independent" variables.

55

1

(

16

each cf which can take on the values 0 or 1 independently of

the others.) For any combination of values of A, 3, and C

(e.g. 1 0 1) we could evaluate the value of the function, F.

A switching function is a (boolean) algebraic statement,

and, like any ether algebraic expression, can often be

simplified by applying the appropriate theorems. For

example,
(*»e will omit the "•" which represents the AND operation)

A3 * AB • AB = E(A • A) • AB

= E1 • AB

= E • AB

= E + A

(Theorem 16)

(Theorem 7)

(Theorem 4)

(Theorem 18)

Let us now draw a logic circuit corresponding to this

switching function, bcth before and after simplification.

B

^

>

AB

AB

AB

(

o
56

I
17

Clearly we have saved three AHD gates.

problem «

Simplify the circuit even farther, by using a HAND ga":e,

££2b1ea 5

Apply the rules (theorems) cf switching algebra to simplify:

HXIZ • HXYZ • wxrz.

Then draw the logic circuits for the given and the simpli-

fied logic functions.

Problem 6

Simplify AFC • A (B • C) • A. Check your result

by completing the following truth table.

— 1

A B c E • C A(B * C) ABC A F

0 0 1 1 0 0 1 1

0 1 0 0 0 0 1 1

0 1 1 1 0 0

1 1 1 • • i i i in nan

Problem 7

use the rules (theorems) of switching algebra to show that:

k B • A B = AB + AB

(
57

{

(

(

18

Comments:
(i) *cu may work en either cr both sides of the equation

algebraically until you get equality between left and right

sides.

(ii) There are »any ways that you could do this.

(iii) One hint, which makes it easier to apply the vggy

useful DeHorgan theorems, is to complement both sides of the

equation:

A B • A B = A B *• A 3

Then start algebraic manipulation according to the rules.

(The left-hand side becomes simply A B • A B, while you can

apply DeHorgan«s theorem to the right-hand side.)

58

19

i

(

3.4 IQSIQ SPBCIFIC1TI0HS

Often the logic specifications will be in the fcrm.cf an
English language statement describing the desired objective.
For example,

On a democratic desert island, three people, A. 3, and
C decide to build a voting aachme. The inputs are A,
B, and C (which will be 1 for a yes vote and 0 for a no
vots). The output must light an LED narked H if the
majority vote ves and must light an LED marked a (as
well as 3) if they vote yes unanimously.

Problea 8
Coaplete the truth table for this device (three input varia-
bles A, B, and c, and two output functions a, and 0).

Inputs Outputs

A
0
0
0

E C
0 0
0 1

1 0

a
o
0

Ü

0

0

As atether exaaple of a perforaance specification, consider
the following.

The seat-belt interlock system for a two-seat automo-
bile is to prevent starting unless the driver and the
passenger (it any) are buckled in. The state of the
passenger's seat-belt is to have no effect if there is
no passenger.

The first step in setting up the truth table is the defi-
nition of the appropriate variables. Here, for exaaple,

• • 1 if there is a passenger,
H * 0 if no passenger
8 a:.5 8 • 1 if seat-belts on,

d p
B and B » 0 if seat-belts not connected

d o
T, the cutput function, aust be 1 if the car is to be
allowed to start.

££2J2lll 2
Set up the truth table :ot this seat-belt interlock systea.

59

i
20

3*5 IlimglAgfll OF l LOGjC OB SWITCHING PDNCTION
Given that we have obtained a truth table corresponding

to the lcgic specifications, the next step is to design an
appropriate logic circuit. Here we will demonstrate seme
systematic approaches to this problem.

3.5.1 Jhe. Sa«-cf-Plodoct8 ISJJJ of the Logic Function
Suppose that we have obtained the following truth table

(logic specification) for some system.

f~-~ 1 .—_ r—~ — —

A B c F COMMENTS

0 0 0 0 _ _

0 0 1 1 <— A B C = 1 only when A=fl, B = 0, C=1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1 < — A B C = 1 only when A = 1, B = 0, C = 1

1 1 0 1 <-- A B C = 1 only when A=1, B»1, C=0

1 1 1 0
----, — .

(

Looking at the rews Kith 1•s in the F column, we can obvi-

ously make the statements in the Comments column. It then
follows that

F=ABC*ABC + ABC

will be 1 enly if A * 0, E * 0, C = 1 or if A * 1, B = 0,
C • 1 or if A* 1, B * 1, C = 0. That is, the expression for
F, above, will have the same truth table as does F in the
logic specification.

60

^

21

i

(

(

Problfj JO

Obtain the truth table for F=ABC+ABC*ABC, -
and confirm that it agrees with the table above.

A logic function in the for» of our example,
F=ABC*ABC* ABC, is for obvious reasons called
the snB-cf;prqducts fcrm of the logic function. If ycu now
reread the present section you should have no difficulty in
seeing that the sun-cf-prcducts form of F can always be
written dcwn by inspection of the truth table.

notice, particurlarly, that although we looked at only

three rows of the above truth table (those rows for which
F = 1), the resulting expression for F is correct for anj;
combination of values of A, B, and C, (We made sure that
F • 1 for the proper three cases ofiil» and so F naturally
took the only other possible value, 0, for all the ether
cases.)

Problem JJ
Obtain the logic function in sum-of-produecs form for the
following system (actually an XOR gate) .

•

A F

0 0 0

0 1 1

1 0 1

1
.

1 0

Problem 12

Obtain the sum-of-prcducts form of the logic functions H and
0 in the voting machine example (Problem 8).
£ro.biem .13
Repeat the sum-of-prcducts form for the seat-belt interlock
systea (Pioblem 9) .

61

»-

(

(

22

3.5.2 IipleaeptaticD of the Sui^of^Products Lo^ic Function

Having found that

P a A B C • A BC+ABC

for the truth table at the start of this section, it is easy

to see that the AND/OB/INVERTER implementation is as

follows.

(

Actually, this sua-cf-products function can be simplified

by Boolean algebra or by Karnaugh napping (discussed later).

That is,

F = AEC*&BC*A EC= B C • A B C

This is also easily iirplemented, with some saving of gates.

££2blsm J«

Starting with the sum-of-products logic functions, ottain

the AHE/OB/INVERTEH implementations corresponding to

Problems 11 and 12. Optionally, for Problem 13 also.

62

.L

<

(

23
3.5.2.1 NÄHD Gate Implementation

Scaetines it is convenient to use NAND gat9s only. (We
will see in the next section how to use HOE gates only.)
Consider the following manipulation.

I «I BC • iBC + HC

f • A B C • ABC+A3C (complement both sides)

= ABC»ABC«ABC (DeMorgan* s theorem)

f = F=ABC»ABC«ABC (complement theorem)

He can recognize ABC as a HAND operation on A, B, and C.

Similarly for ABC and ABC. Then the entire expression

may be thought of as F = a • b • c

ihich is a NÄHD operation on a =A B C, b =A B c, c ~k B C.

i "
\A V

-NaUD Sate Invertsrs

V
y^
y^

ABC

63

I

24

It then fellows that

F * (A • E • C) (A • E • C) (A • B • C) (A • B • C) (A «• E' • C)

will be 0 if A = 0, E * 0, C = 0 and if i « 0, B « 1, C = 0

and if A = 0, B = 1, C • 1, and if A = 1, B • 0, C = 0 and

if A » 1, B » 1, C » 1. That is, this product-of-suns logic

function, F, will have the sane truth table as does F in the

logic specification. (F will be 0 for all the above listed

values of A, 3, and C only, and must therefore be 1 for all

ether values of A, B, and C.)

Probte» J5

Obtain the truth table for

F = (A • E • C) (A • E • C) (A • B • C) (A • B • C) (A • B • C)

and confirm that it agrees with the table above.

If ycu new reread the present section, you should have no

difficulty in seeing that the prcduct-cf-sums form of F can

always he written down by inspection of the truth table.

Notice that although we looked at only five rows cf the

above truth table (those rows for which F • 0), the

resulting expression for F is correct for any combination of

values of A, B, and C. Note, too, that by comparing and

combining the present result with that in the first section

we have incidentally shown that

F = AEC • ABC • ABC = (A + B+C) (A+B+CJ (A+B+C) (A*B*C) (A*B*C)

emphasizing that there are, in general, many alternative

ways cf writing a (Bcolean) algebraic logic function.

r
6U

L

I
25

problem J6
Obtain the logic function in product-of-suas form for the
following system (an XOR gate again) .

A B ?

0 0 0

0 1 1

1 0 1

1 1 0

Problem V7
Obtain the pro duct-of-sums form of the logic functions H and
0 in the voting machine example (sea Problem 3).

Problem .18
Repeat, for the seat-belt interlock system of Problem 9.

(

65

{
26

3.5.3 Implementation of £he Product-of-Saas Logic function

Having found that

F = (A • B • C) (A • E • C) (A • B • C) (A • B • C) (A • B + C)

for cur example system, it is easy to see tha- the

AND/OB/INVEFTER implementation is as follows.

(

A B

Qc

A + 3+C

A*B+C

A + B + C

A + B+C

A + B+C

Actually, this product-of-sums function can be simplified by
Ecolean alg = bra or ty Karnaugh mapping (discussed later) .
That is

F = (1 • B • C>{* • E • C) (A • B • C) (A • B • C) (A • B • q
= (B * C) (B • C) (A + C)

This is much more easily i iplemented, with a considerable

saving cf gates. (We «ould need two inverters, three 2-ir.put

OB gates, and one 3-input AND gate.)

Problem J9

Starting with the ptcduct-of-sums logic functions, obtain

the AND/OR/ItfVERTEF implementations corresponding to
Problems 16 and 17. Optionally, for Problem 18 also.

66

L

21

1
3.5.3.1 NOB Gate implementation

Sometimes it is convenient to use NOB gates only.

Consider the following manipulation.

(

(

F = (A • E • C) (A • E • C) (4 • B • C>(A • B • C) (A • B • C)

F = (A • E • C) (A • E • C) (A • B • C) (A * B • C) (A • B • C)

= (A«-c*C> • <A*B*C) • 1A+B+C) + (A+B+C) • (A+B+C)

F = F = (A+B+C) +(A*B*C) •<A*B*C)+ (A*B*C) + (A+B+C)

which you should recognize as a NOR oparating on each of the

bracketed quantities, each of which in turn is a NOR oper-
ating on the three "added" quantities within the brackets.

•NOR Gate Inverters

£^>i^
A + B+C

A + B + C

A-t-B + C

A«-B*C

67

{
28

Problem 20
Starting with the prcduct-of-sums logic functions,obtain the
NOR gate itpleaentations corresponding to Problems 16 and
17.

I

MZi.i£ Question

Consider a binary adder, which will add the nth digit of a

binary number A, the nth digit of a binary number B, and the

"carry" intc the nth position. Let these quantities be:

& , B , and C . The sum, s , will be 1 if any one cf
n n n n
these is 1, cr if all three are 1. The carry to the next

stage, C , will be 1 if any two or all three are 1.
n «• 1

(

68

{
3.6 ABSBBBg JO fBOJIEHS

1. (i)

29

r— ' i i • "—i - t

1 X 1 • X

1 0 1 I

1 1 1
i

 i _..J L — -J

i.e. 1 • X = 1

(ii) X ! X X • X

0 1

1 0
L

1

1

 1

i.e. X • X = 1

(iii) X

-

Y

—————

X«Y X • X«Y 1

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

» ._ . J

The last column

clearly equals X,

(

(iv)

11
— • I

X Y z X+Y x*z (X*Y) (X*Z) Y«Z X*Y»Z

o 0 0 0 0 0 0 0

0 0 1 0 1 0 3 0

0 1 0 0 0 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1

1 1

 —

1

_ J L 1

1 •equal- i
69

i
30

1 + X
One switch
permanently
closed.

X • X
One switch
opens as oth«
closes.

Diagram for X+(X«Y)

This is equivalent to a short (1) when X • 1 (closed)

and to an open (0) when X * 0 (open)
So the combination is equivalent to X itself

(

4. A-

.== = >

X

P = A • B = A»B
by DeMorgan's theorem

(

70

31

'

(

(

5. WXYZ • «XYZ • WXXZ = (WX+WX+WX) YZ

= [» (X + X) • HX]YZ

m (fi +WX)YS

* (W • X)YZ

There are other possibilities.

Y I Z

WXYZ

WXYZ

WXYZ

x

Y-
Z-

I • X

(
71

(

I

'

(

(

. i •

32

6. ÄEC • A(B+C) • & = Ä(BC+B+C) • A

= A(B+C*C) • A

= A(3*1) • A

= k»'\+k=k*k='\

The truth table should show the function equal to 1 for all

eight ccubinations of A, B, and C.

7.

AB • AB = AB + AE

AE • AB • AB • AB coaplamenting both sides

AE • AB = AB • AE Theorem 9 and DeMorgan

= (A*B) (A*B) DeHorgan

= AA • AE • BA * BB Theorem 16

* 0 • AB • BA • 0 Theorem 6

72

33

(
A E c H 0

0 C c 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
• • 1. J

(

1 B
d

E
F

F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 c 0 0

1 0 1 0

1 1 0 0

1 1 1

1

1

(

73

3a

I

(

10.

11.

12.

————-

A B c ABC ABC ABC F

0 0 0 0 0 0 0

0 0 1 1 0 0 1

0 1 0 0 0 0 0

0 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 1 0 1 0 1

1

1

_

1

1

0

1

0

0

1 •• -•

0

0

1

0

1

0

F * AE • AB

1 * ABC + ABC • ABC «• ABC

U = AEC

13. (a) F = WB B • WB B • WB B
dp dp dp

(b) Your answer will depend on your definition of
variables. Our answer is

F » SDT • SDT • SDT

(

7U

35

(

1».

F • AE • A£

(

(

r^

75

36

15. A E

• " \

c A+B*C A+B+C a+B+c A + B-t-C
--- !
A+B+C- F j

I

0 G 0 0 1 1 1 0

0 0 1 1 1 1 1

0 1 0 0 1 1 0

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 0 0

. ___. . — I

(

16.

(A+B) (A«-B)

(

17. I = (A+B + C) (A+E+C) (A+E+C) (A+B*C)

Ö • (A+B + C) (A+B+C) <A*B*C) (A+B+C) (A + B+C) (A+B+C) (A*B*C)

18. F * (W*B •!) (M*B +B) (W+B +B) (H+B + B) (W*B *E)
dp dp dp dp dp

76

J_

i

i

(

Li

19. & B

\ (\ /

I...

I i

 V

I

i =)

1-, '"T3

A+B

A+B

37

F= (A+B) (A*B)

A 1

J

SOTS There is nc need to repeat
—*- obtain 0.

77

the upper fear OR gates to

38

i
20. A E

—_______

__

Similarily for the voting machine.

Eeview Question.

(
A

n
B

n
c

n
s

n
c
n*1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 0 1

1

1 1

1
—

1

(
78

-U-

(
Section «

KÄBSÄOGH HAPS

Karnaugh maps visually portray the properties of Boolean

functions and can be used to systematically simplify the

combinational logic circuits (functions). To start with, we

will assume that the logic function to be simplified has

teen put in standard sum-of-products form.

(

Example: F = A • [<E • C) • D] • A

To put this in sum-of-products form we set uo the truth
table.

p——

—
A B C C B + C (B+C) «D [(B*C) »D]«A [(B+C) «D]«A F

0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 1 1

0 0 10 1 0 0 1 1

0 0 11 1 1 1 0 0

0 10 0 1 0 0 1 1

0 10 1 1 1 1 0 0

0 110 1 0 0 1 1

0 111 1 1 1 0 0

10 0 0 0 0 0 1 0

10 0 1 0 0 0 1 0

1 0 1 c 1 0 0 1 0

10 11 1 1 0 1 0

110 0 1 0 0 1 0

110 1 1 1 0 1 0

1110 1 0 0 1 0

1111 1

1 0
. .

1
 J

0
L

79

40

C
It new follows, fron *he last column, that

F = ÄBCD • ABCD • ABCD + ABCD • ABCD

There are 16 possible input combinations of a function of

four variables: ABCD, ABCD, ABCD, ABC D,..., of

which only five appear in the sum-of-products expression.

Each possible input combination is called a minterm.

A Karnaugh map fcr a function of four variables is merely a

four by four table of 16 squares or cells, one for each

minterm.

A B C D = 1

(

(

T
B • +

u ° i ° i a (. + _—--—*

ABCD

Figure J

The Karnaugh map is a function of four variables (for

example. Figure 1) is divided into regions A, B, C, and D as

shown. This clearly implies the assignment of regions

A, B, C, and D also. Then each cell will correspond to cne

minterm, whose value nay be entered in the call as in

Figure 1.

Figure 1 has a "cyclic" structure. If you were to wrap the

diagram arcund a vertical cylinder, the two isolated C

columns would join and become adjacent. Siailarly, if the

•ap were wrapped arcund a horizontal cylinder, the two

80

i

41

isolated C columns would join and become adjacent. The
importance cf these observations will become apparent la a
moment.

The next step is to group adjacent 1-cells -- cells

containing Vs. Each group must be "rectangular". and must
(x)

contain exactly 2 1-celis. That is, 1x1, 1x2, 1x4, 2x2,

2x4,.. .groupings are legitimate, a 1x3 group or an odd-
shaped group is ijot. It is possible that a given 1-cell
will fce a member of more than one group. There will, in
general, be more than one way tc group the 1-cells. For cur
purposes we will find that we should use the largest
possible legitimate groups.

u i i i n
~I3EU

-U

Figure 2

(

The five 1-cells correspond to the five minterms in the
above sum-cf-products expression for the example function,
F. In Figure 2, the 1-cells corresponding to the above
example have been grcuped (circled) . Note that the cyclic
property has been used. The two 1-cells in the top row are
Mjacjnt *C t&* two 1-cells in the bottom row.

81

12

The grouping fccusss attention on particular cells. With

With this grouping, we can do nothing with the aintera ABCD,

which appears in a grcup of 1. But consider the <* minteras

in the ctber group:

ABCD • ABCD • ABCD • ABCD * ABD (C • C) • ABD (C • C)

= ABD • ABD a AD (B • B)

= AD

A considerable siaplificaticn! Thus we can now write a aore

siaplified expression for the function F in the exaaple:

F = AECE+AD

Actually, the Karnaugh aap allows us to skip the above

algebra of simplification. ** Note that the 2x2 grcup of

Figure 2 is entirely in the A region and entirely is the

D region. So we can now write down the siaplificaticn A D

by inspection!

Let's exaaine the logic behind this "rule". Recall that any

1-cell represents a lintera of the function, F. Fcr example,

in Figure 2 the third cell in the top row represents A I C D

This will be unity when, A = 0; B = 1; C = 1; and D = 0.

Now, suppose you wished to locate the 1-cells which will

contain 1*s when A*0 and D«0 regardless of the values cf

1 5J2d C. This describes all the cells in the region ccaaon

to A and C, that is the 2x2 group of Figure 2.

Soae ether exaaples are in order. Me will assume that the

functions have been put into sua-of-products forn, and will

enly shew the aaps and the corresponding siaplified

functions.

(

82

43

i

(

F=AD*ABC

(A better grouping than that of the previous example.)

< A »

I I I/O I I I
+ • +—^r—+ 4—i

i
F=EC*A3 + ACD

1-6- A-sH He-

n i

i Tcrrfu
i i

F » A • I
(A function of 2 variables)

c

? « B C • A B
(A function of 3 variables)

83

44

Karnaugh maps can be used for functions of more than four

variables, tut those functions will not be illustrated here.

For functions of "many" variables, computer-based methods

can be used.*

Now let us turn to the product-of-sums form of the switching

functions. Returning to the example, with its truth table,

on the first page of these notes, we can write down the

product-of-sums form flf P bj inspection of the final column:

F = (A + B+C+D) (A+B + C+D) (A+B+C+D) (A + B+C + D)

(A+B+C+D) (A+B+C+D) (A + B+C+D) (A + B+C + D)

(A + E+C+D) (A+B + C+D) (A+B+C+D)

Each cf the sums is called a maxterm and corresponds to a

zero in the Karnaugh map.

The maxterm (A+B + C+D) , for example, will be zero when

A»0;B=0;C»1;D=1

The 0-cells corresponding to this maxterm will be

net in A; net in E; in C; in D
in the Karnaugh map (see Figure 4). Note the inversion!

If ycu compare Figure 2, where tha 1-cells are obtained from

the sum-cf-products minterms, with Figure 4, where the
0-cells follow from the product-of-sums maxterms, you should
agree that the results are eguival=nt.

(

* B. J. Hccluskey, Jr., Minimization of Boolean Function,
Bell Syst. Tech. J. , vol.25, pp. 1417-1444, 1956.
w. V. Quine, A way to Simplify Truth Functions, Am. Math.
Monthly, vol. 62, pp. 627-631, 1955.

84

45

(

Figure u

The O-cells can be grouped as shown, and by inspection,

F = A (B + D) (A • C «• D)

Again, a considerable simplification! Note that if a group

is entirely in one region, say A, then the corresponding

term in the logical sum is A.

The justification of the inspection "rule" is very similar

to that given for the minterm or sum-of-products method.

You should be able tc do this yourself.

(
85

i

(

(

Section 5

IITBODOCTICN TO FLIP-PLOPS

Let us consider a pair of cross-coupled NOR gates as

shown belcw. The inputs are S (set) and R (reset or clear).
and the (complementary) outputs are Q and Q.

If the inputs are S = 1 and R = 0, the output cf NOR gate

number 1 just be 0; that is , Q = 0. If Q = 0 (and, as given,
R • 0), the output cf NOR gate number 2 Bust be 1; that is
Q * 1. In summary, a set input (S * 1, R = 0) will set Q
to 1 (and Q to 0).

Exercise: Show, similarly, that a reset input (S = 0,
I * 1) will clear Q tc 0 (and g to 1) .

The case cf S * R • 0 can be bewildering. No longer dees
data dictate the state of the outputs Q and Q. Do you agree?
whenever this happens - and it oftan happens with circuits
containing flip-flops - we overcome the difficulty by
postulating an output state, say Q • 1 and Q * 0. Then we
check the validity of the postulate. In other words, we must
check to see if we are violating any of the properties of
the circuit. Here with Q • 1, it follows that the output of
NOR gats cumber 1 jjujt be 0. That is, Q * 0, as postulated.
Finally, since both, inputs to NOR gats number 2 are 0, its
output (Q), mus,t be 1, as postulated.

86

I

i

t

U7

In summary, if seme previous event left (Q = 1, Q = 0) ,

then the input pair S = R = 0 will leavs the output .state
unaltered. He say that the flip-flop remains latched in the
set state as long as S = R • 0.

Sxejcise: Show, similarly» that if some previous event
left (Q * 0, Q = 1) , then the flip-flop will remain latched
in the cleared state as long as s = R = 0.

In total, the input pair S = R • 0 latches the previous

output; stats (no matter whether this is the set or cleared
state) intc the flip-flop. consequently, this circuit is
often called a latch.

The input S • R - 1 is undesirable for two reasons.

First, it is easy to see that the corresponding outputs are
Q • 0 and Q = 0. So we could no longer use the Q, Q notation
for the two outputs. Second, if we were to change the inputs
from S-R = 1toS=s R = 0, what would happen? Suppose S
changes tc zero a little quicker than R. Then we would have
the input sequence S = R = 1 > (S = 0, R = 1) >S = R = 0,
which would clear the flip-flop and then latch the cleared
state. Cn the ether hand, if R changes to zero a little
faster than S, then we would latch the set state intc the
flip-flop. In general, we won't know whether R or S will
change mere rapidly, and so we won't know what wi.ll happen
when we switch from S»R= 1 to 5 = E * 0.

In practice, we will call the input condition S = R = 1
ambiguous and avcid it like the plague!

This has been quite a mouthful. He can put it all
together as in the following diagram and table, where Q- is
the previous state of the RS. latgh and Q* is its state after.
the specified inputs hav« beer, applied.

(
87

48

{

1 s B Q* Action

0 0 Q- stays latched

1 ° 1 0 clears Q

1 1 0 1 sets Q

1

1
,-•• -,

*

*

*The ambicuous case will be avoided.

(

(

Note that the action of this device depends on history -
that which has gene before. For example; (S • 0, B = 1) will
have no effect if Q were previously set to 0. But fro« the
same input, (S = 0, K = 1) , will change Q from a
previously-set 1 to 0.

This device can be, and often is, used as one cell of a

meaory. Me can wr.ite one bit of data in-c the cell by
setting <S = 1, R s 0) or (S = 0, a = 1) and we can hold
(i.e., memorize) the data bit, now represented by Q * 1 or

Q * 0, by setting S * S = 0.

Finally, all the flip-flops which follow are built up

around this basic RS latch, and all will be designed to
avoid the ambiguous S * R * 1 input combination.

Exercise: See if you can complete the table cf states
for the crcss-ccupl€d HAND gate latch. Hint: Leave the
first lice in the table until the end.

88

49

I

(

** Answer on next page

89

{

An§««I

50

• ——
s B Q+ Action

0 0 * *

0 1 1 sets a

1 c 0 clears Q

1

 ——

1

 I

stays latched
•

(

•This is opposite.of the cross-coupled
NOR gate latch. With this latch, the
case where S = R - 0 is the ambiguous
case that is to be avoided.

(
90

{

(

Section 6

LAEORÄTOST EXPERIHEMT *1

GATES

Objectives

1. To become familiar with the operating features of

the CD-1 Digi-Designer.

2. Ic investigate the operation of AND, OR, SAND, and

UCB gates.

Equipment

1. DE-1 Digi-Designer.

2. One «ach of the following circuits:

7(*00 - Quad 2-Input Positive NAND Gate

7402 - Quad 2-Input Positive NOR Gate

7408 - Quad 2-Input Positive AND Gate

7432 - Quad 2-Input Positive OR Gate

3. card shewing IC pin assignments.

4. Assortment of hook-up wire.

5. IC Extractor Clip

(

6.1 OSJ OF THE fiIGJ;fiESXG5JB

The Digi-Designer consists of a +5V logic power supply,

four logic switches, two pulsars, four light emitting dicde

(LED) lamp monitors, a clock capable of generating square

waves of six different frequencies, two pairs of terminals

for external connections, a BNC (co-axial) connector, and a

bread fccardir.g assembly.

The terminal next to each logic switch provides access to

the test signal available at the switch. If a switch is in

91

(

52

the + 5V (up) position, the corresponding terminal will fce at
•5V potential (a logical 1) ; in the GHD (down) position the
terminal will be at ground potential (a logical 0).

Each Fulser has two terminals which have complementary

outputs; when one terminal is in the logical 1 state (••5V)
the ether terminal is in the logical 0 state (OV) , and
vice-versa. Hhen a pulser« s button is depressed, the termi-
nals reverse states; when the button is released, the
terminal outputs retcin to their former states.

Each of the LED lamp monitors will light when a signal

connected tc its terminal is +5V; when the signal connected

is 0V, the LED is extinguished.

The pulse generator, or clock, produces six

frequencies— 1 Hertz (Hz) , 10 Hz, 100 Hz, 1 kHz, 10 kHz,
and 100 kHz—which can be selected by a rotary switch.

The deck output terminals provide complementary outputs;

when the left-most terminal is logical 1, the right-mest
terminal is logical 0, and vice-versa.

The 3HC connector and the two pairs of jack terminals may

te used t« route signals to or from the DD-1.

The breadboarding assembly consists of two symmetrical

halves separated by a groove which runs from left to right.
Consider the upper half. There are sixty-four vertically
running columns each having five holes. The five holes in a
column are connected internally; the columns are all
isolated from one another. Above the sixty-fcur columns are
four horizontal sets of twenty-five interconnected tie

points.

In this part cf the experiment you are to investigate the

operation of the DD-1.

92

I

i

(

(

53

6.1.1 ifigic gjf&cfefs aijd lamp Monitors

i. Connect one logic switch output connector to cne cf

the lamp mcnitcr input connectors.

ii. Hove the logic switch from the *5? to GRD and back

again and note the illumination level of the lamp

monitor.

iii. Repeat, using other lamp monitors and ether logic

switches.

6.1.2 falser s

i. Connect the "1" output connector of one of the pulsers

to a lamp monitor and the "0" output of this same

pulser to another lamp monitor.

ii. Note the illuaina tion levels of the lamp monitors;

depress the pulser switch and again observe the

illumination levels of the lamp monitors.

iii. Hepeat, for the other pulser.

6.1.3 Clock
i. Connect one cf the clock's output connectors to a

lamp monitor and the ether clock output to another

laip mcnitcr.

ii. observe the LECs at each of the clock frequencies

payinc particular attention to the 1 Hz case. Time

this with your watch. What do you observe?

6.2 TJ£ INTEGRATED CISCO?TS

Pick up one of the integrated circuits (ICs) . It will

have either 14 or 16 pins. The top surface of the IC should

have two numbers marked on it. 3ne of them, with four or

five digits, starting with in, identifies the type of IC.

y> 93

I
54

(There may be on? or acre letters preceding this number, for
example, E1J7432N.) In this course you will use the
TTL-family or 74-series of IC exclusively. The second number
marked on the IC is a manufacturer's date code. Since many
ICs were manufactured in 197a, confusion is a very real
possibility!

Now search out a 7408, a Quad 2-Input AND Gate, fro« your

IC assortment. Locate the "1-end" of the IC, which is
marked by a notch, a small hole, or the like in its surface.
Match the orientation of the top of the IC with the (top
view) of the 7408 in the pin-assignment card (located in the
manual after this tutorial). Note that the numbers run from
the "1-end" down the length of the IC and then back to the
"1-end) along the otter side.

* Turn the DD-1 off.

* Never do any wiring unless the power is OFF. Turn the
DD-1 ON only, when you are ready to test a circuit.

* Hake sure that all of the 7408»s pins are straight and

then place it, "1-end" to the left, so that its pins
ZSM'l gently ia holes above and below the central gap of
the breadboard. That is each pin will make contact with
a 5-hole vertical bus. Then, gent3 y ar.d firmly press
the IC down with a slight rocking motion until the pins
enter their holes, continue until the body of the IC
has come into contact with the breadboard.

* Hiring errors will be less likely if you habitually
mount ICs "1-and" to the left.

* Taice a fairly short wire and connect +5V to one of the

horizontal buses. Leave this bus connected.
It will always be convenient to construct a full-width
•5V bus when working with logic circuits on the DD-1.

(
94

Ai—"

i
55

* Construct a full-width COMMON (Ground) bus in a similar

Banner. Leave this bus connected.

* Locate the ice and GND pins for tha 7408 from the pin-

assignment card. Connect these pins to the previously-

wired *5V and COMMON buses, respectively. (Use the

5-pin buses into which the appropriate IC pins have

keen plugged) .

* Develop the habit of connecting +5V and COMMON (GND) to

all ICs before ycu do any ctJ. er wiring. These connec-

tions are usually omitted from wiring diagrams, so that

only unvarying habit can keep you from error.

'

6.3 THE AND GA.TE

The operation of a (positive-logic) AND gate is defined

by the truth table, below. That is, both inputs must be HIGH

(1) tc yield a HIGH (1) output.

a-
C = A • B

AND Gate Truth Table
— • ——

Inputs Output

A 8 C

0 0 0

0 1 0

1 3 0

1 1
 i

1
 1

(
95

L

AD-A132 353

UNCLASSIFIED

DEVELOPMENT OF THE COMPUTER SYSTEMS MANAGEMENT
INSTRUCTIONAL LABORATORY AT THE NAVAL POSTGRADUATE
SCHOOL(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
K J MILLS ET AL. JUN 83 F/G 5/9

•

*t

....
—-

^_i_

3 ü

^^^^^^^^^^^" — — ^••^^^^^^ ̂ •*

I

2.2

1.8

1.25 11.4 11.6

MICROCOPY RESOLUTION TEST CHART

NOTIONAL BU"E4u OF STANOABOS - »965 " A

56
A. Mira cne of the AND Gates as shown below. Alsc, connect
Fin 7 tc COMMON and pin 14 to +5V.

Tc logic switch # 1 (Tc logic swi

7408

y Tc l;yic si

\

3^-X_.
•To lamp 1

 "^spin nunbers

switch #2

B. Turn on the power, and for each pair of switch settings

(columns A and B in the table below) record the output that

you observe in column C of the table.

(LED on • 1; LEE off = 0.) Turn the DD-1 off when you have

finished.

2-Input AND Gate Truth Table

Inputs

A B

Output

c

0 (LO) 0 (LO)

0 1 (HI)

1 0

I

(
96

57

6.3.1 A 3^ö£0t A.ND Gate

A. Hake sure that the power is off and th=n construct a

3-input AND gate fron two, 2-input AND gates as shown below.

L1
i

S114-

SW2«-

SW2<-

(A«B) «C
->L?

B. Turn on the DD-1, set the switches as showr in the
table belcw, and record the outputs that you observe.

(

3-Input AND Gate Truth Table

A
Inputs

B C L1 = A«B L2 = k*B*Q

C 0 0

G 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1

._

1 1

 1 i i

97

58

C. Turn off the power and remove the wires from the bread-

board. (Ycu can always leave the full-width +57 and COMMON

buses connected, since you will use them in every experi-

ment.) Then carefully remove the IC using the IC extractor

clip.

6.4 THE OB G.AT.E

If at least one input to an OB gate is HIGH (1) the

output will be HIGH (1). The operation of a 2-input OR gate

is illustrated below.

1«

3-
7432

C = A «• B

OR Gats Truth Table

Inputs Output

A B c

0 0 0

0 1 1

1 0 1

1 1 1

> J ,

98

L

59
A. Insert a 7**32 quad, 2-input OH gate into the bread-
hoard. Connect +5V and COMMON. Mire one of the OR gates as
shown belcw.

-I Tc logic switch t 1

1

1
7432

Tc logic switch #2

To lamp 1

B. Turn on the power, and for each pair of switch settings
(coluans k and B in the table below) record the output that
you observe in column C of the table.

2-Input OR Gate Iruth Table
r —I

Inputs

A B

Output

C

0 (LC) 0 (LO)

0 1 (HI)

1 0

1 1

(

99

60

6.4.1 A 3rIqpBt OR Gate

A. Bak€ sure that the power is off and then construct a
3-input CE gate from two, 2-irput OR gates as shows belcw.

LI

SW1<-
B

SH2<- D>^
SW3<-

 \ \ (A*B)*C HJv^—«
B. Turn on the DD-1, set the switches as shewn in the
table below, and record the outputs that ycu observe.

(

3-Input OR Gate Truth Table

A
Incuts

B C L1 = A+B L2 •

—

A+B+C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
._—

100

L ,

61

C. Turn off the power and remove the wires and the ic from

the breadboard.

6.5 THE HAND GATJ2

A. Complete the following circuit diagram showing how you

could test one of the 7U00's HAND gates. Show pin numbers

and switch and LED ccnnections.

t
>

E. Flug in a 7<*00 and wire it according to your circuit
diagram. Then test it, completing the following table as
you do so.

2-Input NAND Gate Truth Table

Inputs Output

A B c

0 (LC) 0 (LO)

0 1 (HI)

1 0

1 1

 .i — —• - •

(
101

62

6.6 THE NOB G|TB

Repeat the preceding procedure, using a 7402 NOR-gate.

Draw the circuit diagram (showing pin numbers, etc.) and

draw up and complete a table for your test results.

6.7 IRISHES
a. Use the DD-1 to obtain the truth tables for

1. A 7400 NAND gate with its two inputs connected

together, and

2. A 7402 NOR gate with its two inputs connected

together.

(Draw your circuits diagrams, first, showing pin numbers.)

Circuit for 7400
NAND-Gate Inverter

Circuit for 7402
NOR-Gate Inverter

NAND-Gate Inverter
-
Inputs

A • B
Output c

L •

0

1

NOR-Gate Inverter

Inputs
A • B

Output
C

0

1
— i i _ i

(

102

,

63

6.8 AH CgTJONJI fiBS^GH PROBLEM

A Consider the following logic function

X * AEC + ABC • ABC • ABC

(

a. Simplify the function

c. Construct a truth table.

c. Eesign a logic circuit (using the ics investigated

in the lab) tc realize this function.

B. Sire up your circuit and verify that it actually satis-

fies the function.

This logic function can be simplified -o the point where one

requires only two separate ICs and five gates, including

those used as inverters. (It is sot essential that you

react this degree of "perfection".)

Attach a separate page showing your wer* and results.

Include the circuit diagram with pin connections.

103

L

Section 7

LAECBATOHY EXPEEIHENT #2

THE XOR GATE, FüLL-ADDEßS AND HALF-ADDERS

Objectives

1. To design and test several realizations of an XCR

gate.

2. Tc design and test half-adders and full-adders.

Equipment

1. DE-1 Digi-Designer.

2. The following integrated circuits:

2 - 7400 Quad 2-Ir.put Positive SAND Gates

2 - 7402 Quad 2-Input Positive NOR Gates

- 7404 Hex Inverter

- 74 08 Quad 2-Input Positive AND Gate

- 7432 Quad 2-Input Positive OH Gate

- 7486 Quad 2-Input Positive XOR Gate

- 7482 2-Eit Binary Full-Adder

3. IC Extractor Clip.

4. Assorted hock-up wire.

5. IC pin-assigrment card

(
104

_

7.1

65

THE gXCLOSiyg-pB GATE

An EXCLUSIVE 08 (XCS) gate functions so that its cutpar

is 1 whenever an odd number of inputs is 1, otherwise its

output is 0. The truth table for a two-input XOR gate is

shown below.

.— __
I

Inputs OUtDUt I
X ¥ z~ I

I 1
,-_- • -,

c 0 0 !
1

0 1 1 1

1 0 1 i
1 1 0 1
 L 2

x-

y-
- *©y

A. Mark pin numbers on the above diagram corresponding to

the 7U86 XOR gate. Connect Vcc and GND to +5V and COPMCN;

connect the inputs tc logic switches; and the output to a

LED monitor. Test the 7486's logic: does it agree with the

above truth table?

(

105

66
E. Design a sutn-of-products realization of the 2-irput XOF.
gate using AND, OR, and NOT (invertar) logic. Draw the
circuit hslcw 01 or separate paper. (It will always be
helpful to include pin numbers and, of course, the numbers
of the ICs.) Then test the circuit using two logic switches
and a LEE. Put your data in a truth table. Does the latter
agree with that given for an XOH gate above?

C. Repeat the preceding exercise, but use only SAND gates
<IC 7400).

106

.

67
D. Design a product-of-sums realization of the 2-ir.cut XOS
gate using AND/GR/INVIRTSR logic. Draw the circuit and test
it to obtain its truth table. Does the latter agree wi-ch the
given truth table for an XOR gate?

E. Pspeat the preceding exercise, but use only NOR ga~es
JIC 7402).

(

107

68

7.2 JHE HALF-ADDER

A half-adder has cnly two inputs, A and B, and thus dees

not include any carry which may ha/e resulted from adding

together less significant bits. The outputs of the half-

adder are the sum S, and carry, C*, for which the truth

table is shewn below.

-

'!'
uts

B
Outputs

S C*

0 0 0 0

0 1 1 0

1 0 0 1

1 1 0 1
 .. - i I

A. Design and test a half-adder using AND/OR/INVERTER

logic. (Draw the circuit, and complete the truth table,

expsrimsntally.)

108

69

E. Repea-c the preceding «xercise, but use an AND ga*<

(7408) and an XOR gate (7486) .

* DO KOT DISASSEMBLE IHIS CIRCUIT. YOU WILL USE IT AGAIN.

109

J

I •

70

7.3 THE PDÜ-ADDER

The truth table fcr one bit of a binary full-aädsr is

shown below. The bits to be added are denoted by A and E and
the carry frcm the previous bits by C. The two outputs ar<=
the SUB bit, s, and carry, C*, for the next stage.

1

Inputs
C A 3

Outpu-s
s c*

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 t 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
. _. . J J

A-

3-

C-

Full-

adder

->S

->c*

A full-adder can be constructed froa
shown balcw.

TWO half-adders as

Half-

Adder

sum

carry

Half-

Adder

sum
-*S

carry o ->c*

Full-adder

(
110

(

(

71

A. Construct another half-adder as in the previous exer-
cise, but using an AND and an XOE gate. Then, combine the
two half-adders and an OR gate (7432) to complete a "full-
adder. (A complete circuit diagram, with pin numbers, will
help you avoid wiring errors.) Test the full-adder, putting
your data in a truth table. Does the latter agree with the
given table above?

7.4 OPTION^ FOLL-ADCEB EXERCISE

Frcm the full-adder's truth table, set up the sua-of-
products and product-cf-suas forms of the logic functions S
and C*. See if you can simplify them, being on the lockout
for terms common to S and C*, which will therefore need only
be generated once. (Don't spend a lot of time! Very little
simplification is, in fact, possible.) If you wish, draw an
AND/OR/INVEFTER logic or a HAND/NOR logic realization. Tour
circuit diagrams will be quite involved, and constructing
and testing such a circuit would not taach ycu much. (If you
do try, you may have to asJc for additional ICs)

If ycu wish, take a 7482 IC (a 2-bit binary full-addar),

try to untangle its logic diagram (on its data sheet), and
test it.

111

(

section 8

LAECBATOBY EXPERIHEHT *3

HS LATCH, D-TIPE FLIP-FLOPS, AND SHIFT REGISTERS

Objectives

1. Tc investigate the operating characteristics of the

ES latch and E-type flip-flop.

2. To design and test some registers using D-type

flip-flops.

Equifg^Et

1. DC-1 Digi-Designer.

2. The following integrated circuits:

1 - 7402 Quad 2-Input Positive NOR Gates

1 - 7U04 Hex Inverter

1 - 7408 Quad 2-Input Positive AND Gate

2 - 7474 Dual D-type, Edge-triggered Flip-flcps

3. IC Extractor Clip.

4. Asserted hook-up wire.

5. IC pin-assignnent card

112

i

i
73

8.1 JHB HS LATCg

The HS latch may be thought of as The basic building

block from which various types of flip-flops can be
constructed. (RS stands for reset-set. Sometimes SC is used,
meaning set-clear. Occasionally the term flip-flop is used
instead cf latch.) The basic configuration is shown in the
following figure.

(

A. Mark pin cumbers on the above diagram, assuming the use
cf 7U02 NOP gates. Plug in a 7402 IC about midway across the
breadboard. Then wire up an BS latch with S and R coming
from logic switches, and with L2Ds monitoring the outputs
Q and Q. Now "play" with the circuit. Observe that as you
operate the switches ycu can cause the LEDs to "flip-flop".
You should never see both LEDs lighted at the same time,
and only when both switches are set HI should both LEDs be
unlit.

When Q is 1 we say that the latch is set. When Q is 0, we
say that the latch is reset or cleared. Make sure ycu knew
how tc set or reset the latch. The condition S = R = 1 is
said to be ambiguous, since Q • Q = 0 and the latch is then
neither set nor reset. Furthermore, when you switch from
S = R * 1 *o S = R » 0, you cannot foretell whicl way the
latch will "flip". Try it a few times. We will go to seme
trouble to avoid this condition in practical circuits.

113

L i

74
Finally, note that whenever you switch to S = R =0, the
state of the latch remains unchanged (except in the ambi-
guous cass) .

B. Run through this again, systematically recording ycur

observations in the following table. Here Q- and Q+ are the
values of Q before (-) and after (•) the inputs are applied.

I

Inputs
S R

Previous
State

Q-

New
State

Q

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 _J _____— . J

Hiflt; Hew should you obtain a desired previous state (Q-) ?
Suppose for example, xhat you are ready to complete the
fourth line in the table. You can

(i) set S = 1 and B - 0 to obtain Q- = 1,
(ii) set S • R • 0, a neutral starring point, and -hen
(iii) set the inputs S • 0 and R = 1.

•i

Now ycu can record the new outputs, Q* and Q*.

Does your completed table agree with the following short

taole?

11U

75

Inputs
SB

0

0

1
1

Q* Action

Q- Stays latched
I

0 j Resets (clears) Q
1 Sets Q

Q+SQ*=0 j Aabiguous

* DO NOT EISCONNECT IEE LATCH CIRCUIT.

8.2 JHJ BS &ATCJ WITH BBABLE

A. Add ar enable prevision to your RS latch by inserting
AND gates as shown below. Ose logic switches for the S'r I,
and B* inputs and connect LEDs to the outputs Q and Q. Test
the circuit and conrlete the truth table. (To obtain each
desired previous state, Q-, you aay have to set or reset the
latch with the logic switches.)

115

76

E
Inputs

R'

Previous
State

Q-

New
Star.«

0*

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

—- 1 . i

8.2.1 Clocked RS Latch

Connect the enable input of the previous circuit to the
1-Hz clock instead of the logic switch. Connect a LED to
aonitcr tte clock. Then observe the effects of changing the
S' and B' inputs at various times during the clock cycle.
Confira that the latch performs as in the truth table above,
except that the clock now takes the place of the input E.

(

116

77

8.3 THE D^TTPE FLI,E-FLOP

Add an inverter (IC 7404, or one of the NOR gates .as an

inverter) tc your clocked RS latch, as shown. The result is
a level-clocked, D-type flip-flop. Test the circuit and
complete the truth table (in which X = "don't care"). Unless
your reactions are very fast, you will find it convenient to
use a logic switch instead of the 1-Hz clock tc enable the
flip-flop.

Clock

^>

>

>

RS LATCH

R Q

Inpcts
CLOCK D

Previous
State

Q-

New
State

Q*

0 X 0

0 X 1

1 0 0

1 0 1

1 1 0

1 1 1

. __ J — ._ — j L. J

At this point you should turn off the DD-1 arid remove all

of the wires and ICs.

117

>

78
8.3.1 The 712« D-type Flip-flop

Set up a 7474 edge-clocked D flip-flop with a 1-Hz deck
input (CP or the pin-assignment card). Use logic switches to
set the data input (D), preset (S), and reset (R) . Connect
LEDs to monitor Q# Q, and the clock. (Note the fact that the
set and reset inputs are inverted—bubbled.) Investigate the
flip-flcp's operation. In particular, try to answer the
following questions experimentally.

(i) At what time during a clock cycle can (or does) a
data input take effect?

(ii) Is the 7474 positive or negative edge-clocked? Ir.

this respect, how does the 7474 compare with the standard
D-type flip-flop?

(iii) When can (cr does) a preset or reset input take

effect?

(iv) Does the state of the data input and/or the clock

influence the effect of the preset or reset inputs?

(v) To preset a 7474 flip-flep, must the input, s, be
zero cr one? To clear a 7474 flip-flop, must B be zero
or one?

8«* §CHi APPLJCAXIOSS OP D^TYPE FLIP2PL.OPS

D-type flip-flops are very common in digital systems.
Three typical circuits follow.

8.4.1 gegjal-load. legt-shift Begister
A. Use two dual 7474 flip-flops to construct the following
serial-lead, left-shift register. As always, numbering the
pins in the diagram «ill help you avoid wiring errors.

118

fL1 • L2

79

»SW1

»CLK

»SH3

Test the register, observing that you can

(i) retain the register contents indefinitely by disa-

bling the clock with SW3,

(ii) shift data left on each clock pulse, entering the

new LSB from SW1, and loosing the MSB off the left end of

the register, and

(iii) clear the register at any time with SW2.

8.». 2 1 Ring, Counter

Make two changes in the previous circuit so that

(i) the claar operation (SW2) now enters the number 0001

into the register, and

(ii) successive clock pulses then left-shift the single

1-tit circularly aicund the register.

Sake the changes in the diagram and tes'

counter. Did it perform as raguired?

:he ring

(
119

,

80
8.4.3 A lälällelrAsad» tgft-shift Register

Redraw the serial-load, left-shift register with the

modifications needed to allow a synchronous parallel load

(all fcur input bits loaded on one clock edge when the LOAD

input is high). When LOAD is low, the register should

operate as in the circuit above. Construct and test the
circuit if you like.

(

(

120

(

Section 9

LAECRATORY EXPERIHENT #4

THE JK FLIP-FLOP AND ASYNCHRONOUS COUNTERS

Objectives

1. lo investigate the operating characteristics cf the
JK flip-flop.

2. Tc design and test some ripple (i.e. asynchronous)
counters.

Eqajpgent
1. DE-1 Digi-Designer.
2. The following integrated circuits:

1 - 7402 Quad 2-Input Positive NOR Gates
1 - 7404 Hex Inverter
2 - 7408 Quad 2-Input Positive AND Gate
1 - 74 32 Quad 2-Input Positive OR Gat as
2 - 7473 Dual JK Master/Slave Flip-Flops with

Separate Clears and Clocks
2 - 7474 Dual D-type, Edge-triggered Flip-flcps

3. IC Extractor clip.
4. Asserted hock-up wire.
5. IC pin-assignment card

121

32

9.1 THE JSJ£EEIL£S£1II COHPIGDHATIOH

If cne or more flip-flops in a logic circuit are driven

by the outputs of flip-flops (directly, or through gates)
there are potential timing difficulties with the tasic
clocked ES latch constructed in experiment 3 (RS LATCH, D
FLIP-FLOE, AND SHIFT REGISTERS). Specifically, the clock
pulse must te narrow enough so that no flip-flop responds to
the "new" output of a flip-flop clocked at the same time. On
the ether hand, the clock pulse must be long enough to
ensure that every flip-flop has time to respond reliably to
its legitimate inputs. One way to avoid this difficulty is
to use the master/slave configuration shown belo«. The
master latch responds to its inputs only when the clock is
high. When the clock goes low, the master is disabled first
and immediately thereafter the slave is enabled and responds
to the naster's outputs. The new output (coming frön the
slave) cannot affect a master until the clock next goes
high. Thus a short clock pulse is not necessary, and a
sguare-wave clock signal can be used.

122

(

83

9.1.1 T.he Ma st er/Slave E§ iatch
A. Oss two 7402 NOB gates to build each of two RS latches

as in experiment 3. Then complete the circuit as shown abcve
using 7408 AND gates and a 7404 inverter. (Be careful! Make
sure that Q not Q , leads to the slave's set input, and be

a m
certain to identify Q = Q correctly.) It will help if you

draw the complete circuit,- with pin numbers marked. Connect
logic switches tc S and R, the 1-Hz clock to CLK, and use
LEDs tc monitor C r C (=Q) t and CLK.

m s ~

B. "Play" with this circuit until you are sure that it is

functioning correctly, and that you understand the master/
slave idea. (You will probably find it convenient to replace
the 1-Hz clock with a logic switch.) In particular, dc you
agree that

(i) A set or reset input can take effect (on the
master) only when CLK is HI?
(ii) The set or reset input then takes effect at the
slave's cutput (C and Q) at the instant that the CLK
next gees LO?

C. Test the circuit, completing the full and abbreviated
logic tables, below. DO NOT DISMANTLE YOOH CIRCUIT.

123

8U

•
Inputs

S R Q- Q* Q*

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1

-

1

I.I 1. •• 1 —

Inputs

S R

0 0

0 1

1 0

1 1

Q«- j Actian*
I

•The acticn of the circuit

(if any) can be:

To stay latched

To set

To reset

Anbiguous

120

85
9.2 ISI JK ZLl£zZkC£
A. use two additional 7408 AND gates to convert your aaster
slave RS latch into a JK master/slave flip-flop. (Note that
Q feeds tack to the reset side of the master; Q feeds back
to the set side.)

1

>) s

CLK

B

Q

Master
Slave

RS Latch

Q

Q
;

^ i Q

)

JK FLIP-FLOP
{

E. Connect logic switches to J and Kr the 1-Hz clcck or a
logic switch to CLK, and monitor Q, Q, and CLK with LSDs.
"Play" with the circuit until ycu are satisfied that it is
behaving as you expect. Complete the logic tables, below.

To avoid confusion, J and K should be changed only when CLK
is HI. Then the outputs Q and Q will reflect such a change
at the instant that the CLK next goes LO - a negative edge.

(
125

96

i

Inputs
i—-—

S R Q- Q+ z*

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

_ i -J

Inputs
. !

Action* I S R Q*

0 0

0 1

1 0

1 1

•The action of the circui

(if any) can be:

To stay latched

To set

To reset

Ambiguous

NOW YCU SHOULD DISASSEMBLE ALL YOUR CIRCUITS FROM THE DE-1.

126

L i

87

9.2.1 The. Dual JK EtIP-flop

Set up cne of the 7473 JK flip-flops with logic switches

to set J, K, and R.l Ose the 1-Hz clock or a logic switch

for CP (CP s clock pulse) . Monitor CP, Q, and Q with L3Ds.

Test the flip-flcp tc see if its behavior agrees with that

that cf ycur home-grcwn unit of the previous section.

Does the output (slave) transition occur on a positive
clock edge or a negative edge?

Dees a LO or a HI input to R claar the flip-flop?

Dees a reset signal clear the flip-flop regardless of

the state of J, K, and CP?

9.3 ASTSCHRQljODS CCDHTBBS

There are two basic types cf counter - synchronous and

asynchronous. The latter is also known as a ripple or serial

counter. In it, one flip-flcp changes state, triggering a

second flip-flop, which triggers a third, and so on, ...The

effect ripples through the array of flip-flops.

(

* Note the non-standard Vcc and GSD connections with a 7473
JK flip-flop.

127

98

9.3.1 Jhe SisaSL |i££le ÜEr£2Sa£S£
K. Insert two 7473 dual JK flip-flops on the DD-1 and
construct the counter shown below.

* Note that the J and K inputs must be connected to *5V

(logical 1) even thcugh soae texts suggest that they may be
left floating (i.e., unconnected). If you do leave then
unconnected, erratic or even non-operation may result.

CLK

*-»+5V

»SK1

(

E. Make sure that the counts runs correctly from 0000

(after clearing) tc 1111 (binary) before automatically

reseting to 0000 for the next cycle.

Compare the frequency at the output of each stage with the

input clock frequency. This circuit is often called a

£L12.HSü21 divider.

f = 1-Hz
CLK

f » 0
f »

1
f »
2

t *
3

DO NOJ DISMANTLE YOUR COUNTER.

128

,

89

9.3.2 3iS Bj.narE Bipple-Dqwn Counter

Convert your circuit into a down-counter. You need tot

draw the circuit, but you should describe the change (s) that
ycu »ade. (Changes tc LED connections are not allowed.)

Did the counter operate correctly? What was the count
sequence following a clear signal?

9.3.3 The RißEle Op/Down Counter

The counting actions of the previous two circuits can be

combined ty adding a suitable arrangement of gates. One such

configuration is shown below. (You could use four NAND gates

instead of the AND/OB/INVERTER arrangement)

TL1

Q1 J

CF<

C1 8 K

•a

CLEAR

COUNT ENABLE

L2
up

down

<F
QO J

CP<

Q1 R K

SW1

CLK

->SW2

* >SW3

129

I

90
Construe- and test this modulo-4, binary, up/down ripple

counter. (A modulo-N counter is defined to be a counts? with
N states. Here N - 4 and the four states are 00, 01, 10, and
11.) Did this counter perform as you expected?

There will be more on counters in the next experiment.

(

130

L

(

(

Section 10

LAECHATOBI EXPERIMENT #5

HORE COUNTERS

Objectives

1. To investigate the characteristics of an asynchronous

(i.e. ripple) decade counter.

2. To investigate the properties of several synchronous

counters.

Egjji£Bent

1. DE-1 Digi-Designer.

2. The following integrated circuits:

1 - 7408 Quad 2-Input Positive AND Gata

1 - 74 11 Triple 3-Input Positive AND Gates

2 - 7473 Dual JK Master/Slave Flip-flops with

separate clears and clocks

3. 1C Extractor Clip.

4. Asserted hock-up wire.

5. IC pin-assignment card

10. 1 ASINCHRONOOS CgOTTJERS (CONCLODED)

In the previous laboratory (THE JK FLIP-FLOP AND

ASYNCHRONOUS COONTERS) you investigated a number cf ripple

counters. Here is one more.

10.1.1 T.be RipElg ECD Decade Counter

BCD (binary coded decimal) implies that the digits in

this ccuEter are assigned the usual binary weights of

8-4-2-1. Decade and decimal imply aodulo-10. So the counter

must te designed to ccunt up normally from 0000 to 1001, and

must then automatically reset to 0000 on the next (the

tenth) clock pulse. One such circuit follows.

131

92

CLK

CLEAR

A. Show that the above circuit operates as a BCD decade
counter ty completing the timing diagram, bslow. Make sure
that your diagram shews a proper count sequence:
0000, 0001, ..., 1001, 0000, 0001, ...

CLK
0

00 0
i i

1

0
1

1
02 0

1
53 0

• ~1

- 1
03 0

I J ~ — L— h—d —1 , •• — ___J 1 1 1 1 1 L__J U. — J . . 1 1 1

B. Set up the circuit, using two 7473 dual JK flip-flcps

and a 7UC6 AND gate. Does your counter behave as your timing
diagram predicts?

132

)

(

93

10.1.2 l]je Decade Coont6E (continued and optional)

A. If more than cne decade of counting is required, a

"carry" must be generated by each of the lower decades as it

resets. This carry will act as the clock input to the next

higher decade. Shew hew you would obtain this carry signal

(which should go low when the decade resets to 0000).

B. Design a logic system to "decode" the four outputs of a

decade counter. That is, the four signals Q0, Q1, Q2, and Q3

must generate a high output in the appropriate one of ten

output lines (one corresponding to each decimal digit 0

through S). All other output lines must be low.

C. Design a circuit which will generate an output voltage

propcrticnal to the count in a decade counter. This voltage

must lock like a staircase as the count rises from 0000 to

1001, and the vcltage must return to zero on the next count

(great accuracy is not reguired) . This is basically a

digital-to-analog converter.

10.2 SI NC HO) NO OS CCDNTEBS

The principal limitation of an asynchronous (ripple)

counter is that the frequency at which the counter can be

driven is limited by the number of flip-flops and their

delay times. The reason for this is that the clock pulse for

each flip-flop (except the first) is received from the

preceding flip-flop in the chain. Thus, one flip-flop must

change state before the next can, and so on.

Synchronous counters, on the other hand, are designed so

that all flip-flops receive common clock pulses, and hence

change state simultaneously. Gate networks are added to

selectively control the inputs to the flip-flops and thereby

provide the counting action.

133

9a
10.2. 1 Jhe Synchronous Bi nar j. Op-counter
A. use two 7473's and a 74 11 to construct the following
counter. Does it perform as a modulo-16 binary up-counter?

fM fl2

Q3 J
<

K

TT

-a Q2 J

<

- K
B

tL3

1'
Q1 J

<

- K
R
TT

CLEAR

L4

Q0 J

<

- K
B

CLK

SW1

10.2.2 The Synchroncas Binary Og-coanter with Ripple Carry
A. A counter which cffers a compromise between the simpl-
icity of a ripple counter and the speed of a synchronous
counter is the synchronous counter with ripple carry shewn
below, construct and test this counter. Does it perform as
a mcdulo-16 binary uc-counter?

1L1

Q3 J
<
K

1
"TT-

<

U2

HQ2 J
<

K
I
TT-

L3 1.4

Q1 J

<

K
•s

TT-

Q0 J

K
1

TT
ax

CLEAR SW1

134

95
B. Discuss (or comnent on) the speed (i.e., maximum deck
frequency) and complexity of ripple counters; synchronous
counters with ripple carry. Note: k flip-flop is slower
than a siuple gate.

10.2.3 Ihe Synchronous Down-counter (optional)

Modify (and describe the modifications of) the cour.-cer of

the previous section so that it will count down. Don'r alter
the connections to the LEDs. Does the new counter ope.rte
correctly?

10.2.4 A Modular 3 Synchronoas Op-counter
A circuit fcr a modulc-3 up-counter is shown below.

t L1 t L2

A. Show that this circuit operates as a modulo-3 up-counte;
by drawing the timing diagram. Does it count correctly:
00, 01, 1C, 00, 01, ...?

135

J

96

CLK

QO

Q1

•JTTTTT

- 1

E. Construct and test this counter. Does it behave as pred-

icted by your timing diagraa?

10.2.5 A Hodq^o-6 Cconter

A modulo-6 counter can be obtained by adding an ordinary

binary stage to the modulo-3 counter of the previous
section. (Kodulc-6 counters can be used to build soodulo-12,
modulo-24, and modulc-60 counters, which have obvious appli-
cations in tiae-of-day clocks.)

p L1 ' • L2 i ! L3

C2 J

<

K
1

Q1 J

<

01 - K
R

QO J

<

K
R

D- >

 1 — 1

C 3 J C J
CLK

i

CLEAR
» SW1

(

136

97

A. Euild this counter and show, experimentally, that it :
a ncdulo-6 counter. Complete the following table of counts,

Clock

Pulse Q2 Q1 QO

0 0 0 0

1

2

3

4

5

6

7

 i J 1

B. Khat cede dees this circuit use? In other words, what

weights must be assiqned *o the three digits? (It is net the
usual binary t-2-1 cede.)

(

10.2.6 ä «odulo^lg Counter (optional)

Add another binary stage to yield mcdulo-12 counting.

(This is not quite sc easy as in the previous section.) The
counter should still be synchronous. Draw the circuit. What
weights Bust be assigned to the digits in this counter? If
you built ar.d tested this unit, did it perform properly?

137

98

10.2.7 A agdPlgtS Co outer (optional)

See if you can design a mcdulo-5 up-counter aloag the

lines of the modulo-3 counter you designed earlier. As well
as three OK flip-flops, you will need one AND gate.

138

(

section 11

ABBREVIATIONS

Hz: Hertz

IC: integrated Circuit

kHz: kilcHertz

LED: Light Emitting Diode

LSB: Least Significant Bit

LSD: Least significant Digit

MSB: Most significant Bit

MSD: Most significant Digit

TTL: Transistor/Transistor Logic

ECD: Binary Coded Decimal

130

w

Section 12
DEPIHITIOMS

Discrete; Consisting of distinct or unconnected elements.

Gate; Ä device that outputs a signal when specified input

conditions ate met.

Hertz; A unit of frequency equal to one cycle per second.

Integrated Circuit; A tiny complex of electronic compo-
nents and their connections that is produced in or on a
small slice of material (as silicon) .

Inverter; A circuit that realizes negation. A circuit that

performs logical complement.

Karnaugh Kap; A mathematical tool used to visually portray

the properties of Boclean functions and to siaplify combini-
tional logic circuits or functions.

Latch: Name often used for flip-flop circuits that held

the circuit outputs at their previous state when the inputs
are set tc zero.

140

(

L

Section 13

T1BIE 0? DECIHAL HOLTIPLES AND SUBMOLTIPLES

Multiples And
Subaultiples Prefixes Symbols

18
10 exa E

15
10 pecta

12
10 tera 1

9
10 giga G

6
10 mega H

10

2
10 hecto h

10 deca da

-1
10 deci <3

-2
10 centi c

10 milli

-6
10 micro (Greek mu)

-9
10 nar.o n

-12
10 pico p

-15
10 femto f

-18
10 atto a

refixes

exa

pecta

tera

giga

mega

kilo

hecto

deca

deci

centi

milli

micro

141

AgeSWDII B

HEATHKIT DIGITAL LOGIC TRAINING DEVICE TOTOBI1L

********************* ******4t**********

**
*** ***

INSTRUCTIONAL LABORATORY ***

*** ***
*** ***
*** ***

EEATHKIT ***

**4

DIGITAL LOGIC ***

»

TRAINING DEVIC2 ***

• ** ***
*** ***
********************** ******************

(
142

"U I

TABLE OF CONTESTS

INTRODUCTION ii

CAUTION iii

Sectien page

1. HZ1TBKIT LOGIC TRAINING DEVICE 1

PHYSICAL LAYOUT OF CONSOLE 1
POWER SWITCH 2
LCGIC INDICATORS 3
POWER SUPPLY SECTION 4

• 12 5
SND 5
-12 5
• 5 5

LINE SOURCE SECTION 6
CLOCK SECTION 7

CLK 1
GND 7
CLK NOT 7
SWITCH 7

LCGIC SWITCHES SECTION 8
A and A NOT 8
B and E NOT 8

DATA SWITCHES SECTION 9
SW1 (SW2.SW3.SWU) 9

BREADBOARD SOCKET 10

2. EXPERIMENTS 11

EEFORE PERFORMING EXPERIMENTS 11
LOGIC INDICATORS EXPERIMENT 12
CLCCK EXPERIMENT 13
LOGIC SWITCHES EXPERIMENT 1U
CATA SWITCHES EXPERIMENT 15
D-TYPE FLIP FLOP EXPERIMENT 16

3. CLOSING REMARKS 18

1U3

IMTBODUCTIOR

Welcome tc the Instructional Laboratory. This booklet is to

assist ycu in familiarizing yourself with the HEATHKIT

DIGITAL DESIGN EXPERIMENTER, This device can bs used to

breadboard (build) digital circuits using integrated

circuits and connecting wires. The use of this device

requires a fundamental knowledge of digital switching

theory. A minimum understanding of Boolean Algebra nay be

sufficient if all ycu desire is a device tc assist ycu in

understanding or learning digital theory. Check cut the

HEATHKIT DIGITAL EXPERIMENTES and the HEATHKIT DIGITAL

TECHNIQUES instruction books in Ingersol, room 224. For NPS

students, these bocks and the DIGITAL DESIGN EXPERIMENTER

form a complete digital electronics training course.

Recommended courses cf instruction to augment this bock and

the ether material mentioned are: IS-2000, EE-2810, and

CS-3010.

This book is written in programmed instruction format, so

please fcllcw the page prompts for maximum benefit.

1HEN READY JO CONTJNOE. TOE! TJE PAGE.

14U

1. CAOTION

A precautionary message must be inserted at this time.
This design console is not itself designed to handle mcr»
components than will easily fit on the large terminal strip
at the bottom. Therefore, do not "jumper" to components not
on the HEATHKET device.

1HEH Hg A DJ TO COST.UO!, TÖBB THE PAGE.

(
145

IE order to familiarize you with the DIGITAL TRAILING
DEVICE, we will first describe the physical layout. Ir. crder
to follow along, please use the device itself and the
HEATHKIT assembly manual. Place the trainer where it is
convenient to lock at and open the manual to page 3«.

HHE1 HEAD! TO COHJISOE, TORH THE PAGE

(
1U6

(

Section 1

HEATHKIT LOGIC TSAIHIHG DEVICE

1.1 PHISICAL tiI25I 2f CONSOLE

As ycu look at tfce top of the console, it is apparent

that it is divided into seven sections. We will start at the

top left and describe the function of each of the areas.

First, however, notice that each of the top six sections has

several plastic blocks mounted on them and each block has

four holes in the tcp. These are called connecter blocks

and are used to make the electrical connections between

sections and components. Each of the holes is electrically

connected tc the others in the same block, thus any hole in

a block will connect to the signal or component as per the

label directly above the connector. For example, each of the

holes in the connecter under the + 12 label will provide a

positive 12 volt signal.

«HEN BJADJ TO CONTINUE, TURN THE PAGE.

147

1. 1. 1 FCBEB SWITCH

Locking at the top left hand corner of the console, you

will find the power on-off switch. This switch is or. when

the rccksr is pushed down on the left and off when pushed to

the right. Do not Flug in or turn on the console until

instructed to do so.

BHEH BEAD! TO CONTINUE, TOR 8 THE PAGE.

(

(

148

>

1.1.2 I CG IC INDICATORS

The first area we will look at is labeled LOGIC

INDICÄTOES. You will see four connector blocks ,as

described earlier, and four light emitting diodes (LED)

labeled L1,L2, L3, and LH. When connected to a logic

circuit, these LED's will turn on or glow when a logical "1"

or "HIGH" signal is applied. A logical "0" or "LOW" will

extinguish the led.

«HEM BEAD I TO CONTIM0E, TORN THE PAGE.

(

1U9

-

1.1.3 PCIER SOPPLY SECTION

Directly below the LOGIC INDICATORS, you will see a

section marked P0W3R SUPPLY. This is the part of the console

that provides the required operating voltages for the inte-

grated circuits you will be using to do designs and experi-

ments. Elease ensure that you understand this section prior

to connecting any circuits together on the console.

jjHES BEADY 3P. CONTINOE, TORN THE PAGE.

(

150

I

(

5

1.1.3.1 *12

This block provides a positive twelve volt source. It

should only be connected to the + 12 volt input pin (normally

labeled Vcc) on integrated circuits that require •12 volts.

1.1.3.2 GND

The function of this block is to provide a complete
connection for the operating power by allowing current to
flow back tc the power supply from the integrated circuits.
The connection is normally to the GND pin of the integrated
circuit.

1.1.3.3 -12

The -12 volt source is similar to the +12 source, and

should cnly be connected to components that require -12

volts.

1.1.3.4 + 5

This is a different kind of power source. It provides the
+5 volt operating power as required by some integrated
circuits and thus is quite similar to the + 12 and -12 volt
sources. The difference is that this block is also capable
cf providing a constant logic signal of "HIGH" or "1". This
feature is necessary in some digital applications.

MM JÜDl TO COJCTINOE, TOHH THE P±S£-

151

1.1.4 LINE SOOaCE SECTION

To t&« right of the POWER SUPPLY section you will find

the LINE SOUBCE section. The function of this section is to

provide a digital signal (square wave) that varies at the

wall socket frequency, normally around 60 HZ (cycles per

second) . &n associated ground connection is provided for

this signal also. This ground is the same as the ground

provided in the POHEE SUPPLY SECTION.

WHEN BEJDI TO CONTIMOJ, TUJ.N JHE P£GE.

(
152

(

1.1.5 CLOCK SECTIOB

The CLOCK section provides a source of constantly

changing or switching logic signals, at one of three speeds.

Experiment #2 demonstrates the clock operation.

1.1.5.1 CLK

This is the clock cutput that normally will be used. The

signal is a square wave that switches at the frequency

selected ty the switch.

1.1.5.2 GND

This is the saae ground connection as before.

1.1.5.3 CUC HOT

This signal is the logical complement of the CLK signal.
It is provided for the instances when the "FALSE" or
inverted clock signal is needed.

1.1.5.4 SWITCH

The switch allows selection of one of three operating
frequencies for the clock; 1HZ, 1 KHZ, or 100 KHZ. A HERTZ
(HZ) is one cycle per second, a KILOHERTZ (KHZ) is 1000
cycles, and thus 100 KHZ represents 100,000 cycles per
second. If you have the LED»s connected, you can see the
effects of the switching circuitry at 1 HZ but the ether
speeds are too fast fcr the human eye to respond.

HHEH HJÄDJ TO C.O.HJIH0J, TUBS THE PAGE.

153

1.1.6 1CG1£ SIJSCHJS SECTION

The LCGIC SWITCHES section will be looked at next. These

connection blocks ana switches supply selectable logic level

to the positions they are in now (A SOT and B NOT) .

1.1.6.1 1 and A NCT

These two blocks provide complementary signals, that is,

when A is "HIGH", A is "LOH", and vice versa. A will be

"HIGH" when the A switch is in the A position, and A will

be "HIGH" when the switch is in the A (normal) position.

(

1.1.6.2 B and B HOT

The operation of these connectors and switch is the same

as for A and A.

A simple exercise will be performed later to clarify the

operation of this section.

HRE» BEAEI TO CONTIHDE, TOHH THE PAGE.

154

(

(

1.1.1 CJ2A §SI1£H2S SECTION

The section below the LOGIC SWITCHES SECTION is called

the EATA SWITCHES section. it consists of four ccr.nectcrs
and snitches. Each performs in exactly the same way, so only
one will be explained. The DATA SECTION will be the source
cf logic input signals for your circuits.

1.1.7.1 SH1 (SW2,SS3,SS4)

The operation of these switches is such that if the

switch is in the "UP" position (moved toward the LOGIC

SWITCH section) a *5 volt logic signal is applied to the

connector directly below the switch. Conversely, the "DOWN"

position connects GNC or a logical "LOW" to the connecter.

As with the LOGIC SWITCHES section, an experiment will be

performed that will clarify these features.

WHEN HEADY TO CONTINUE, TJJHN THE PAGE.

155

(

10

1.1.8 EBEADB04BO SOCKET

The last section of the console is the BREADEO&RDING

SOCKET, which is not labeled but is the long object full of
holes located at the bottom of the console. This is where

you will be inserting integrated circuits for design or
experimentation. Lcok carefully at the socket and observe
that it resembles several of the connectors we have seen
elsewhere all connected together. It performs the same func-
tions as the connecters but has one major difference. Notice
that the socket is divided horizontally by a slot that sepa-
rates twe horizontal rews of holes. The socket has five
holes per vertical section, and as before, ail five holes
are electrically connected to each other internally, when
inserting integrated circuits in the BREADBOARD SOCKET,
always straddle the slot with the two sides of the chip.
NEVER make connections to external devices or sockets, since
damage tc the power supply and console may result.

1HEN BE AD I TO CONJIHOE, TOHJj THE PAGE.

156

Section 2

EXPEEIHENTS

2.1 IlfCRJ PERFORMING EIPEBIHEHTS

Read this page before performing the following experiments.

1. It is now time to plug the HEATHKIT LOGIC DESIGN

EXPERIHEKTER in and apply power to it. First, ensure that

the power switch is in the OFF (to the right) position. Now

plug it in ro any 110 volt grounded outlet.

2. Turn the power switch on and observe that the red power

indicator light to the left of the switch illuminates.

3. When inserting and removing components, it is best to

turn power off.

4. After components are in place, you can connect or remove

wires uith the power en or off without any danger.

5. If at any time ycu suspect the console is not operating

correctly, TURN IT OFF, and report the problem to Professor

Schneidewind or your instructor.

6. Remove integrated circuits with the extraction tool

provided (looks like a tweezer) in order to prevent damage.

IMEN JJADI TO CONJINOl, TORN THE PAGE.

157

12

2.2 LOGIC INDICATORS BIPERIMEHT

Refer to page 27 of the HEATHKIT MANUAL and connect ens

end of a wire to *5. Then connect the ether end of the wire

first to 11, then L2, L3, and W. Each LED should light when

you connect the wire to it.

iHEM BEAEI TO COHTI.H0E, TUHg THE PAGE.

158

13
2.3 CLCCK KPEBIHENT.

Refer to fags 28 and position the CLOCK switch to the 1HZ

position, connect a «ire from LU to CLK, and another wire

from L3 to CLK NOT. L3 and LU should now alternate on-off at

a one cycle per second rate. L3 should be on when L<» is off

and vice versa. Sow position the switch to the 1KHZ posi-

tion. You should obserr second rate. L3 should be on when L4

is off and vice versa. Now position the switch to the 1KHZ

position. You should observe that the LED's appear to be on

continuously.In fact they are switching faster than ycur

eyes can detect. with the switch in the 100 KHZ position,

the LED's will also appear to light continuously but at a

brighter intensity.

«HEN FJADJ, TO CONTEND!, TOHN T.BB PAGE.

159

2.4 LOGIC SWITCHES EIPSRI SENT

14

Refer tc page 29 and connect one wire frcm L« to -LOGIC

switch A. Connect another wire from L3 tc logic switch k
NOT. Operate the switch and observe that when the switch is
in the A HOT position L3 is lighted, and when the switch is
in the A position, LU is lighted.

WHEH BEADl TO CONTIHOE, TOHN THE PAGE.

160

15
2.5 DATl SHITCHES EXPERIMENT

Refer tc page 3 1 and connect a wirs fron Li to- DATA

SWITCH 1. Operate the switch and observe that in the OP

position, LU is on. In the DOWN position, LU should be cff.

2M1 ilMI 2fi CONJINOJ, TÜHJ TBE PAGE.

16 1

16

2.6 SrIJPI Zkli IhQi BXPERIBE»T

Refer to page 35 and carefully connect the «ires required

to build a D-TYFE FLIP FLOP, using the DM7U0ON integrated

circuit. Page 36 has a schematic representation cf the

circuit. In order to ensure correctness of your connections,

you can fellow the following listing.

PIN 14 TC «-5

PIN 13 SEE PIN 10

PIN 12 TC SW-1

PIN 11 TO PINS 9 AND 1

PIN 10 TO PIN 13 AND LOGIC SWITCH A

PIN 9 SEE 11

PIN 8 TO PIN 5

PIN 7 TC GND

PIN 6 SEE PIN 2

PIN 5 SEE PIN 8

PIN U SEE PIN 3

PIN 3 TO PIN H AND L1

PIN 2 TO PIN 6 AND L2

PIN 1 SEE PIN 11 To test the operation of the D- TYPE

FLIP-FLOP, apply power to the console and observe L1 or L2

is on. Put Data switch 1 in the "up" position and cycle

Logic Switch A. At this time L1 should be lighted. New put

Data Switch 1 in the "down" position and cycle Logic Switch

A again. L2 should be lighted and LI off. For this experi-

ment, the Data Switch acted as the input signal and the

Logic Switch acted as the Clock input. The flip flop has

performed as expected, since a D-TYPE FLIP-FLOP is supposed

to have as it's output the same signal that was at the input

when the Clock signal arrived.

(

162

17
Additional information on the D-TYPE FLIP-FLOP and ether

circuits can be found in the HEATHKIT DIGITAL TECHNIQUES
instructional material. For the adventurous, see experiment
11 of section 6 for an example of a J-K FLIP-FLOP frequency

divider.

(
163

section 3

CLOSI1G BEBABKS

This booklet , the Heathkit Digital Design Experimenter

Console, and the Heathkit Digital Techniques material are

provided to assist you in learning and understanding ho«

digital electronic circuits operate. If you discover an area

where improvement is needed, please notify Professor

Schneidewind or your instructor.

(
164

IPPESDi; c

FHOBFT 80 T0TOBIAL

**

»**

**

INSTRUCTIONAL LABORATORY

FECHPT 8 0

165

TABLE CP COITEHTS

INTBODOCTION ii

Secti^n gage

1. THE EBOMPT 80 COMPUTES 1

Introduction to the Prompt 80 1
lajor Divisions of the Keyboard 2

Register Display Group 3
Command Function Group 4
Interrupt/Beset Group 7
EEOH socket 3
I/O Port Connector 8
Input/output Group 9

Applying power to the Prompt80 11
Modifying a Register's contents 13
Error messages 19
Modifying Memory Locations 20
GC .:.... : 21
Single Step 22

2. BOSHING A PROGRAM IM THE EBOHPT 83 24
Entering a Program 24

3. WRITING ASSEMBLY LANGUAGE PBOGBABS 31

Assembly Language Programming 31
Multiply Flow Chart . . . 32
Multiply Algorithm 35
Final Machine Language Program 45

4. AEVANCEE OPERATIONS WITH THE PBOMPT 80 54

Advanced Concepts and Functions 54
Debugging 55
Limitations 57

Advanced Operations of the PromptSO 60
EBON Operations 61

(

166

(

IHTBODQCTIOH

Welcome to the Instructional Laboratory. In this laboratory

you may work with digital devices on a level fro» logic

gates and the elementary electronics of computers to the

fully integrated level of advanced microcomputer systems.

Through this series of texts you can progress from little

or no knowledge of digital equipment to a working famil-

iarity with advanced Automated Data Processing. However,

this course of instruction was not designed to make an

expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

more serious student other books and reference manuals are

available in the Computer Center Library and the Kr.ox

Library.

You should have teen given the following material for

this tutorial:

This textbook on the Prompt 80

The Prcmpt 80 machine

The Prcmpt 80 Microcomputer user's Manual by Intel

A F5CM (programmable read-only-memory chip)

167

r~

(

(

In this phasa of the instructional series yoa will be
exposed tc a low level digital computer, the Prompt 80 by
INTEL COFF. The Prcmpt 80 is based on the 8080 Central
Processing Onit (CPU) chip, and is programmed directly from
the keyboard. As a prerequisite to this manual you should
have a working knowledge of the basics of computer arith-
metic, including binary and hexidecimal notation, and a
basic understanding of the functions of the computer.

At the end of this course you will be able to:

1. Turn on and initialize the Prompt 80.

2. Load and run given programs on the Prompt 80.

3. understand the basics of machine language

programs.

t. Write a simple machine language program from a

given algorithm, enter, debug and run the
machine language code on the Prompt 80.

Additionally, you will be given instructions on hew to
save ycur programs by "burning" a Programmable Read/Only
Memory chip (PROM) with the Prompt 80.

22 not plug in the Prompt 80 until instructed tc dc so.
Put the Ercmpt 80 in front of you and turn to Section I.

168

,

(

Section 1
TBE PROMPT 80 COHPOTEB

1-1 I»21fiEOCI20H JO TJE PHOHPT 80

This section is a self-paced prograaaed guide to the
Prompt 8C. Each page has a short section to read, scae
action for you to perform, and further instructions. If you
get confused return tc the last page which you fully under-

stood and try again.

Hhen Heady, turn the page.

169

!

<

2

1.2 MA JOB DIVISIONS OF THE KBYBOABD

For this section of the tutorial you will be referred tc the
keyboard cf the Prompt 80 itself and to the labels of the
keys. There is a picture of the keyboard on page 1-6 of the
Prompt 80 user's Manual. You should fold that page out of
the manual and have it ready for reference to help you find
the appropriate sections of the keyboard as you go along.

With the Prompt 80 in front of you, notice that there are
six major divisions indicated on the face of the computer:

1. Register Display Group

2. Command Function Group

3. Reset, Interrupt Group (önmarksd group of three)

U. EECM socket

5.-I/O Forts connector

6. Input/Output Group

Locate each of these 6 divisions.

When Ready, turn the page.

170

(

3

1.2.1 !S3il£§£ 2i§li§I G£2S£
The Register Display Group is ussd to display the contents
of ths CFÖ registers four bytes at a time, using nexidacimal
notation. (If you do not understand hexidecimal notation,
stop now and read the section in the Prompt 80 user's Manual
on computer arithmetic.) The four bytes represent four
registers in the 8080 CPU. The printing below the digits
show the names of the registers. The selector lights beside
the titles show which four of the registers are being shewn
at the time. In the first row are the labels B,C,D and S.
In row 2 are H,L,Flags and A (Accumulator). The third row
shows the two bytes cf the Program Counter and the two bytes
of the Stack Pointer. These are the names of the registers
available in the Prcmpt 80's 8080 CPU. They are normally
associated in pairs, E and C, D and E, H and L, and A and
Flags. The Program Counter (PC) and Stack Pointer (SP) are
always treated as pairs.

If these terms are unfamiliar, or you do not understand
the concept of Program counter and stack Pointer, read the
User's manual, pages 3-1 to 3-13.

When Beady, turn the F^ge.

171

I

(

(

9

1.2.2 Ccwafld Function group

To chang« the register display from one set of registers to

another, use the SCFCLL REGISTER DISPLAY key in the CCMHAND

FONCTICN GBCUP.

The COMHAND FONCTICN GROOP has eight digital readouts, 16

numeric keys and 8 command keys. Two of the command keys

have two marKings--Nert and (,) and Execute/End and (.) .

These keys are the delimiting keys, and will be important in

data entry.

The digital readout has three fields: The function

field; the address fisld and the data field. Data from the

numeric keys are entered into these fields until a delimiter

key is pressed. More on data entry later in this section.

«hen Ready, turn the Fa<J*«

172

5

The numeric keys have the 16 hexidecimal digits 0-9,A-F.

These keys axe used tc enter data into the address field and

data field cf the display group. The P key also is a

command key when pressed from the monitor state tc select

one cf the 8 internal functions available to the user.

These functions «ill be discussed later, in the advanced

operations section.

when Heady, turn the page.

(

173

(

6

The ccmmand keys are used to command the built ir. monitor

program in the Prompt 80. Pour of the keys cause the func-

tion field in the display to change after clearing:

Examine/Modify Register produces Er

Display/Modify Memory produces dn

SO produces GO

Single step produces SS (then PC)

The SCRCLL REGISTER DISPLAY changes the display in the

Register Display Group as previously discussed. The

PREVIOUS/CLEAR ENTRY key either erases the current entry or

backsteps to the next lower address, depending on the

sequence and mode in which it is used.

when Beady, turn the page.

(

174

-

4

(

1.2.3 Iltexrufit^Reset Group
The Interrupt/Reset key grcup controls the monitor program
built into the Prompt 80. This program actually monitor's the
state of the CPU and provides the housskeeping functions to
enable the user to concentrate on the program he/she wishes
to operate without concern for a starting program. The
monitor controls the input and output for the keys on the
machine, and interprets the key strokes of the user into the
functions discussed in this section. The MON INT key inter-
rupts the currently operating program and returns control to
the monitor. The OSR IVT ksy interrupts the present opera-
tion and steps to the location 3C02 H. The programmer may
install at that location a jump to any address desired to
indicate the beginning of the interrupt handling routine.
The SYS BST key reinitializes the Prompt 80 to initial turn
on conditions. This key will "rescue" the computer from
uninterruptable lock ups.

When Beady, turn the page.

(
175

8

1.2.4 EHOM Socket
The PfiOM socket holds PROMs fcr reading and writing. I* is
a zero insertion force socket. The movable handle lccks the
PHOH in the socket and releases it when desired.

1.2.5 1^0 fo£i Connector
The I/C EOBTS connecter is provided to connect the Prompt 80
to an external device. This connector is used to connect to
card or tape readers and printers, for example. The use of
the I/o connector is beyond the scope of this text. See the
user's manual for more information.

when Heady, turn the page.

(
176

r

9
1.2.6 Input/Output Group
The Input/Output Grcup has 16 LEDs, 8 each for Input and
Output. The 9 keys below the lights control them." A
lighted LED represents a binary 1 and an unlit LED repra-
sents a binary 0. Pressing the key below the appropriate
LED changes the input from 0 to 1. To erase the 1's, the

BST key resets ALL bits to 0.

«hen Beady, turn the page.

(
177

10
This concludes the basic description of the keys. You

should new knot* where the keys are, and roughly what they do
on the panel of the Prompt 80. If you need to you can
repeat this phase. The foldout page of the Prompt 80 User's
Hanual can he kept fclded out as a reference for the rest of
this tutorial. If you are referred to a section of the
board and cannot reaember where tx is the picture can help
you find it.

If you wish to repeat this phase, do so now.

When Beady, turn the page.

178

11

1*3 *£I£IIü. 2QSSS 22 211 PBOMPTSO

Move the Prompt 80 near an electrical outlet with 110 v. AC

(normal mains). EO NOT PLUG THE PROMPT 80 IN "öNTIL

INSTRUCTED TO DO SO.

The On/Off switch is a rockar switch found near the fuse

socket en the back of the unit. Before plugging the unit in

to the wall socket, check to see that the selector switch

next to the ON/OFP switch is in the 115 v. position. Turn

the On/Off switch to Off and then plug the Prompt 80 into

the wall socket.

Mcve the On/Off switch to the On position. The fan for

air cooling should new come on, indicating power is applied.

The digital readouts should light and quickly stabilize. If

this does NOT happen, return the On/Off switch to OFF.

When the unit is properly turned on you will be ready to

continue.

When Beady, turn the page.

(
179

(

12

The Register Display Group should display the following

digits:

1 2 3 li F F A A

And the selector light should indicate that this represents

the data in the HL and FLAGS, A pairs of the CPU.

Depress the SCROLL REGISTER DISPLAY key in the COMMAND

Group once. The group indicator should move down to indi-

cate the registers new displayed are the Program Counter and

Stack Pointer. The digits should read:

67893F90

indicating that the Program Counter points to 6789 H* and

the Stack Pointer is pointing to 3F90 H, the first available

stack address. The PC value is not usable, but It an

initializing value only.

Press the SCROLL key again. The selector LED now shows

that the BC, DE pairs are displayed. The digits should

read:

bbCCddEE

Again, these are initializing values.

Press the SCROLL key again to return the display to the

HL, Flags, A display.

When Ready, turn the page.

* The "H" indicates that the preceding number was written in
hexideciital notation. This fconventi^n continues throuahout
tnis text.

180

I

(

13

1.4 MODIFYING A RBGISTBB« S COHT£IJS

To dencnstrats hew tc modify the con-ants of a register pair

we shall use the HL register pair. The Register Display

Group now indicates that that pair contains 1234 H.

To modify that pair, or any pair, the Examine/Modify

register ccamand key is used. Press that key now, once.

The Function field of the digital command readout should

change frcm a hyphen and now display MEr" indicating that we

are going to examine or modify a register.

If it does, turn the page.

If it does not, press SIS RST and then Sxamine/Hcdify

register. It should now be as described above. If it still

is not, seek assistance.

181

(

1U

The mcritcr now anticipates tha input of which register
tc modify. The registers are numbered from 0 to B hexide-
cimal (0 to 11 decimal). To indicate the register to
modify, you will press one of the numeric keys from 0 to B.
To determine which key to press for each register, look at
the Register Display group now. The registers are identi-
fied below the Register Display Group in three rows cf four
each. In addition to the name of the register, there is a
small number beside the register name as they are displayed
that indicates which numeric key to press for the corres-
ponding register. In other words the B register is number
0, the C register is number 1, etc. Using this scheme the H
register is number 4.

Press the 4 key once now.

When Heady, turn the Faga.

182

15

The address field of the command/function group should

now display a 4, indicating the address of the register that

is to be displayed and Modified. To indicate that the" data

entry is finished, we iust now press a delimiter key. Since

we will te entering more information, the correct key to

press is the Next (,) key. Press that key now.

When Beady, turn the page.

(

183

(

16
The data field of the command/function group now displays

the number 12, the current contents of the H register. This
is another confirmation that you have selected the proper
register for modification, LooJc at the aegister Display
Group and confirm that the H register is filled with a "12".

Now that the monitor has the function and register infor-
mation the last thing needed is the data to insert. Press
any numeric toy and observe that the number is displayed in
the data field of the command display. Press another number
and the first number moves to the left, with the new number
showing up in the right most place. Press a third number
and the left one disappears, shifted left out of the
display. The second digit moves to the left and the new
digit is again in the right most place. The shifted cut
digit is lest, and net remembered by the Prompt 80. This
feature of shifting cut can be used to correct incorrect
entries without having to go through the sequence fully.
Additionally, this «ill continue as long as you press keys.
To make sure we are still together press the a key followed
hy the B key. The data field should now display the digits
Ab. This is the value to be inserted to the H register.

»hen Beady, turn the page.

184

1
17

To accomplish the insertion of the data into the H

register we oust press a delimiter Key. Either the (,) or

(.) key will do. The difference between xhem is that the

(,) dees not end data entry and the (.) does. Since we are

going to enter data into the L regisxer, in addition to

entering data into the H register, press the (,) key now.

The At in tha data field should now go away, and the

display of the HL register should now display that the H

register has that value in it. The Register Display Group

should new read Ab34FFAA. The command/function group now

displays

5.34.

If it dees, turn to the next page.

If it dees not, rede the previous five pages until you

understand and have the right results.

(

185

(

(

13

The mcnitcr program has cow stepped to the next register

in at ascending sequence. That is, the monitor is ready to

modify register number 5, as seen by -he "5" in the address

display, (which is the the I register) and is currently

indicating the value in that register, 3a. Check the

Register Display Grcup again to verify that this is the

contents cf the I register. Press the C and D numeric keys

in that crder, observe that the data field of the command

display new has the two characters in it, and then press the

(.) key to indicate tc the monitor that the data in the data

field is ready for the L register, and that no mere data

will be entered.

The display in the command ragister will display the

characteristic hyphec indicating no function selected, and

the Register Display Group should read AbCdFFAA.

If it dees, proceed to the next page.

If it does not, re-enter the data until the L register

indicates the proper data.

When ready, turn the pag<».

186

(

(

19

1.5 EHfiCH HgSSJfSJS

You may have discovered that the monitor may give you -he
message "Error" in the command display if you do net "press
the correct type of key. This is a simple alerting device
to advise the user that the sequence of key presses is not
proper. The monitor does NOT test for the validity of an
acceptable key, orly that an acceptable key has been
pressed. If th9 Ericr message appears, the Clear Entry key
will correct it and return you to the monitor program.

As a demonstration, press the Examine/Modify Register key
twice new. at the second press the Error message appears,
indicating that the second key press was inappropriate. To
clear the Error message, press Previous/Clear Entry. The
hyphen reappears.

When Feady, turn the page.

187

(

20

1.6 MODIFYING MJS&I2 LOCATIONS

The Display/Modify Memory works in much the same way as the

Examine/Mcdify Register function. The difference between

the two is that the Memory function must be given an address

to modify cr display,- which will be present in the address

field of the command display, and that data field will

display the previous contents of that memory address before

modification.

To mcdify an address in memory, the sequence of key

presses is:

Press Display/Modify Memory

(produces dn in display)

Enter the address into the address field.

Terminate address with (,)

Enter Gata to go into address in data field.

Press (,) if more data for next address is to be

entered, (.) if no more data is ready.

The PREVIOUS key will backstep through memory in the

display mcde. To step forward, simply enter no data to

modify the address and press either (,) or (.) for the next

address.

As an example, press the Display/Modify Memory key new.

Observe that the display shows dn. Now input a four digit

address (any number below 3000 will do. To end the

address, press (,). The display will immediately show the

contents cf that address. Press PREVIOUS to see the address

decrease by one and the contents change. Press NEXT (,) to

return to the initial address and p ress (,) again to step

to the next higher address.

Nhen Ready, turn the page.

188

21

entered
address
address

(•) is

1.7 GO

The GC key transfers control to either an address
from the keyboard into the address field or to the
in the EC register if no data is entered into the
field. The command is executed «hen the delimiter
pressed.

The sequence cf key presses is:

Press GO, cbserve GO in the function field

Enter an address, press (.) to go there or
press (.) to go to the address in the PC.

in example of this function «ill be given in a later discus-

sion.

When Ready, turn the Fage.

(
189

22

1.8 SIEGLE §TEP

SINGLE STEP moves through the program similarly to GO,

except that each press of the key moves the PC one step.

This can be a useful key to debug or examine the functioning

of the program in a slew manner. The register contents can

be checked at each step to see if the program is working as

desired, cr to locate the mistake.

An example of this will be given later in the text.

when Feady, turn the page.

(
190

,

23

This concludes the introduction phase of this t*«t. In

the next section you will be asked to enter a simple prcgran

from the keyboard, tc run and tesr it, and then tc lead the

same prograa from the PROM you have been given.

If ycu desire to stop in the middle of the text, this is

a convenient place tc stop.

Continue when you are ready.

191

AIJ A 132 353 DEVELOPMENT OF THE COMPUTER SYSTEMS MANAGEMENT
INSTRUCTIONAL LABORATORY AT THE NAVAL POSTGRADUATE
SCHOOL(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

ytf T

IINCI ASSIFIED K d MILLS ET AL. JUN 83 F/G 5/9 NL

11IIIIIIIBI1II
\h

I f

,

2.8 1.0 B»

1.1

1.25

12.2

1.8

1.4 11.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS - 1963 - A

(

I

(

section 2

RONSING 1 PBOGBAH IB THE PROMPT 80

2.1 INJIBIJSS 1 PBOGBAH

Now that you know hew to modify memory and registers, it

is time to enter and run a program which is given tc you.

The sequence of operations is the same as in the previous

section, using the Display/Modify Memory key of the

Command/Function Group.

To begin, the first address of the program is 3DE0 H. To

enter this address, press Display/Modify Memory, and observe

the "dn" in the Function field. In turn press the 3, d, e,

and 0 numeric key. The address field should now display

3dE0. The data for that address is 3E. Press the Next (,)

key to indicate that there is more data to follow, then

press the 3 and E keys in turn. The Command display should

now read:

dn3dE03E

To enter the data to memory, press the Next (,) key.

The command field shculd now read:

d n 3 d E 1 X X

where the X's indicate that any value could be present. The

address field has been incremented to the next higher

address, and is ready for data entry to -hat address. The

data for this address is 8b. Enter that data.

Now that you know how to enter data, turn tha page and enter

all the data as shewn in the table. You have already

completed the first 3 steps. Begin with step four. Note

192

L

25

the difference in steE 21 «here you enter a (.) to end 4ata

entry.

»hen Eeady, turn the page

(

(
193

u

26

(

1. () Eis play/Modify Memorj

2. <: J) <a> (e) (0) (,) (3) (e)

3. (,) (6) (b)

». (i f) «3) (3)

5. (r) (€) (b)

6. (,) (0) (e)

7. (r) (0) (f)

8. (,) (5) (9)

9. (,) <a> (b)

10. (,) (?) (9)

11. (r) (C) <d)

12. (,) (f) (1)

13. (r) (0) (7)

1». (,) (0) (d)

15. (r) (f) (2)

16. (,) ft] (6)

17. (r) (3) <d)

18. (,) (c) (3)

19. (r) (6) W

20. (,) (3) (d)

21. (.) (this ends program loading)

when Beady, turn the page.

(
194

L

(

27
Now that the program is in memory you are ready to

execute it. Press the GO key and observe that the function
field reads GO.

Tc provide the proper address for the GO instruction,
recall that the program you entered started at address 3ED0
H. Press the 3, e, d, and 0 keys in order and observe that
the address field reads correctly. If it does, you are
ready to begin the operation cf the program. Before you
exscute the program, here is «hat it does:

Each of the digital LEDs on the display board is

made up of 8 sections, 7 straight bars and one
period for decimal points. These 8 sections can
te lit individually by this program. To choose
which sections to light the input/output group
keys will be used. One of the bars, or the
decimal point, will illuminate when the corres-
ponding I/O key is pressed. Pressing another key
will illuminate another section. «hen you run the
program you can experiment and find which keys
light which sections. To extinguish all sections
you will press the reset key. That is the sole
function of the program you have entered. It
tests all of the segments of all of the LEDs at
once.

When Beady, turn the page.

(195

-'•

28

Now ycu may begin the program execution by pressing the

Execute/End (.) key.

You «ay experiment with this program as you wish. Make

as many patterns with the I/O Group keys as you can. It is

an interesting effort to determine the binary combinations

that make up the decimal digits. Note also that not all

segment combinations have any meaning, and that not all

alphabetic letters can be formed with the led segments

aiven.

I

When you are ready to end the program, turn to the next

page.

(
196

29

To end the program, press the SYS RST itey and the initial

state of the computer is restored. If ycu wish you can

examine the memory contents and see that the reset did cot

destroy your program and thus a GO(,) 3D20(.) will start the

program again.

WHEN REAEY, TORN THE PAGE.

(

(
197

(

30

This concludes the introductory phases of this manual.

The following pcrticn of the text is written in a mere

classic style, without the directions to perform any actions

directly. The remainder of this manual will give ycu infor-

mation on the Instruction Set of the 8080 CPU, how to

convert an algorithm to machine language, and an introduc-

tion to the advanced functions of the Prompt 80 (such as

reading and writing a PROM of your own.)

198

Section 3

WRITING ASSEMBLY LANGUAGE PHOGHAHS

I

3.1 ASSJiggLl IMSSiGE PHOGRABHIHG

Now that you can enter data into and manipulate the

memory of the Prompt 80 you can begin to write ycur cwn

programs fcr the machine. If you already know how to

program in machine language, you may skip this chapter and

continue in Section IV. if not, this chapter will present a

simple example of how to program the Prompt 80. More inde-

pendent study will be needed for the serious student of

machine language programming.

To begin the process of writing a program one needs to

analyze the problem tc determine the input, process and

desired output the program is to have. In this example we

shall use a simple task as the process; the multiplication

of a 16 bit number by an 8 bit number to produce a number

whose bit size is no larger than 16 bits. The input will be

the two numbers, in binary, and the output will be in binary

(note that the Prompt 80 will display the answer as hexide-

cimal, but that the program will handle the data one bit at

a time.) The process will be the typical binary multiplica-

tion , as shewn in the figure on the next page.

(

199

J—

32

3.2 HSI3I1U S19.S £1111

I Multiply Algorithm |

 I
I Get Multiplicand |

 l_ ,I_.
I Get Multiplier I

-!_
| Initialize Partial Product Location |

| Lead Loop Counter I

_l
| Shift Partial Product Left Once | ""*

 |_

I Shift Multiplier Left Once Into Carry

I
Most Significant Bit = 0 ? Y—

I ADD Multiplicand to Partial Product

 _
I Shift Multiplicand Right once |

I ADD Carry to Multiplier |-*

J__
| Decrement Counter by One |
T-—— — ———— —— — — — ——— — ——— — — — — —————— —

I
Counter = 0 ? N

 I
| Mcve Partial Product to Memory I

Jmm
I Fnd of Algorithm |

(
200

L

{

I

-L

33
The first step in writing the program is to write

(usually in longhand) the steps that we wish to perform, in
order, and to desk check the solution. In this case,' the
first step in the algorithm is to fetch the multiplicand
from memory. The second step is to fetch the multiplier
from memory. Write these two steps down in a column on a
piece of paper new. At this time we are net concerned with
the specifics of HCS the Prompt 30 will do these two
actions, but with WHAT we wish it to do.

Continuing, the third step is to initialize a partial
product location in the computer that will be used later on.
As the last step in this initializing process, we want to
load a counter with the number of times the process is to be
repeated, that is, 8.

Our plain text program should now read:

Get multiplicand.

Get multiplier
Initialize partial product location.
Set counter to 8.

With this much completed, we are ready to perform the
actual multiplication loop. The first step in the loop is
to shift the partial product to the left one place. Then
the multiplier word is shifted to strip off the most signi-
ficant byte. The first branch is about to occur. IF the
most significant byte is a 0, the program jumps to the point
at which the most significant byte is restored to the multi-
plier. The counter is then decreased by one. IF it is a 1,
the intervening step of adding the multiplicand to the
partial product occurs. In either event, the multiplier is
then shifted to the right, and the counter is decreased by
one.

If the counter is now NOT equal to 0, the loop is
performed again from the point at which the partial product

201

3U

was shifted left, as above. This process is continued until

the counter reaches 0. it that point the answer is now in

the partial product location, and all that remains to do is

to stcre it in memory. As a test, writs out the steps

above, and then look at the next page to see if your program

agrees with the one provided by the author.

(
202

u I

(

3.3 5SI2IIII AiGORITHfl
FRCGBAM TG MULTIPLY TWO BINARY NUMBERS

Get multiplicand.

Get multiplier.

Initialize the partial product location.

35

Initialize counter to 8.
Shift left the partial product. <
Strip aultiplier bit.
IP it is 0, jump to

Else, add multiplicand to partial product,
Rsstcre the multiplier bit. <
Decrement the lccp counter.
If NOT zero, repeat from
Stors in memory.

(

End cf program.

(
203

L,

0-

(

36
Now that we have a program in English, we have tc trans-

late it into machine code, O's and 1's. To assist is this
process the developers of the 8080 CPUs provide a system of
mnemonic devices to assist the programmer. The first step
is tc translate the English into the mnemonics, then
transfer the mnemonics to hexidecimal eguivalents. This
avoids the necessity of making a much larger jump from
English to machine language directly.

In the Prompt 80 manual you will find a summary of the
mnemonics fcr the 8080 chip on pages 3-20 to 3-37. Although
ax first the code locks imposing, study will reveal that the
instructions fall into several categories—accumulator
instructions, byte instructions, word instructions and
control instructions. The manual has divided the mnemonics
within the four groups into functional areas with add,
subtract, etc, grouped together.

The first step in cur program was to get the multiplicand
from somewhere in memory. For the time being we shall
assume that the location will ccme later. For now we shall
refer to the word instruction table fcr an instruction to
fetch a wcrd from memory. On page 3-31 we see the instruc-
tion mnemonic "LHLD." This machine instruction will load the
HL register pair with the contents of a memory address. The
memory address is tc follow the mnemonic and has four
digits. Of importance is the fact that the L register gets
the information at that address and the H register the
information at the address-1. This is a pattern followed
throughout the 8080 family of CPU's. Note also that the
next instruction on Fage 3-31 is "SHLD" and performs the
inverse of "LHLD", i.e., it stores the contents of the HL
pair in an address in memory. Looking at our program we see
that we shall want tc do that as a last step, so we should
arrange to have the answer in the HL pair so we can store it
conveniently using SHLD. Since the partial product will
eventually be the final product, then the HL pair should

204

4-

{

t

(

37
hold th€ partial product of the process, rather than
holding the multiplicand or multiplier. After the LHLD
instruction the HL pair will hold the multiplicand, so we
have tc move the data somewhere else to make room for the
partial product. Between "Get multiplicand" and "Get
Multiplier" now comes "Move HL to somewhere".

We have now added a step to our program, namely, HOVE THE
HL PAIR TO (somewhere). The (somewhere) can be cur free
choice of any of the registers that can be addressed by the
8080 program instruction set. To make that decision, Icok
at the word instructions that move data and pick one. The
quickest of them is en page 3-30, "XCHG". It trades the
value in the HL registers with the value in the DE registers
and enly takes u cycles to accomplish. This is efficient,
and will be used from here on. This is MOT the only way to
do it, and may not be the best in all applications. It
works here and we shall use it.

Now that the multiplicand is safely ia the DE pair, we
have but tc get the multiplier from memory. The program
calls for the multiplier to be shifted eight times, and
looking at the instruction set we see that the accumulator
can be shifted directly (pg.3-23). Therefore, it is best to
have it in the accumulator. Looking through the accumulator
instructions we see "LDA" as one that loads the accumulator
from an address in semory. This will be the next step in
the program. The final step prior to the multiplication is
the initialization of the partial product and counter. For
the initial value of the partial product, recall that the
partial product will be in the HL pair. Me want tc ensure
that this pair is at 0 now. Looking for an instruction to
put a value into HL we find "LXI reg16, data 16". This
loads the register identified by reg16 with the number
data16. In ether words, "LXI H,0" will put zeroes in both H
and L registers, as we want. Similarly, if we use the B

205

,

4-

1

38
register as the counter, putting an 8 in it can fce accom-
plished using the byte instruction "MVI B, 8. ••

Since we are now ready to loop it is useful to identify
the position of the beginning of the loop with some tempo-
rary name (label) so we can rapidly find it again. For this
exercise the loop will simply be called "LOOP»1 and that name
should be written beside the instruction to shift the
partial product left, since that is the first instruction in
the lcop. At this point we should reorganize the program
into three columns, one for labels like "LOOP", one for
mnemonics and one for the plain English description.

Do that now, and then turn to the next page for a chsck
of your werk so far«.

206

39

{
LABEIS MREMONICS

Start LHLD

XCHG

LEA

LXI H,0

MVI B,8

LOOP

ENGLISH

Get multiplicand.

Move multiplicand to D£ registers.

Get multiplier.

Set Partial product to 0.

Load loop counter.

Shift left the partial product.

Strip multiplier bit.

IP 0, jump around next instruction.

else, add multiplicand to P.Prod.

Restore the multiplier bit.

Decrement loop counter.

If NOT zero, jump to LOOP

Store answer in memory.

Ho« that you have the process, see if you can

instructions to shift the partial product to the left.

ind

(As

a hint, remember that a shift to the left
doubles the value of a binary number!)

of one position

(
207

U-

I

(

although many «ays of accomplishing that task are avai-
lable to the prograoner, we have chosen vas "DAD H", which
simply adds the HL pair to itself, thereby doubling it. The
result is that the pair is shifted to the left one position,
as desired. Tricks like this one are frequent in machine
language programming. Remember that the most obvious solu-
tion may NOT be the most effective. Search for efficient
code whenever possible, either to decrease memory require-

ments or to speed up the operation of the program.
To strip off the multiplier bit the accumulator command

"RAL" will shift the accumulator left through the carry bit.
In this way the carry bit holds the most significant bit of
the accumulator, the bit we are interested in at the moment.
Since tie carry bit can be tested for its value, we can
branch at this point depending on the state of the carry
bit. The desire is to jump around the next step if the
carry is C (HOT SET) . The mnemonic is "JNC addr16". Right
now we do not know the address we wish to jump to, but it is
the statement which says "Shift the multiplicand to the
right." Fcr now give it the name "NOADD" and the mnemonic
will he "JNC NOADD" for the time being.

If the carry is 1 (SET), the next step is executed,
namely, add the multiplicand to the partial product. The
partial product is in HL, the multiplicand in DE. "DAD D"
will add DE to HL, which is what we want. Now we want to
restore the carry tit to the number in the accumulator.
(This is not needed tc perform the multiplication, tut will
restore the multiplier at the end of the program, a desi-
rable result in some applications. This is call "non-
destructive".) The command ACT 0 will add the carry bit,
the accumulator, and 0 together, resulting in putting the
carry bit back into its place in the accumulator.

Tc decrement the counter (the B register) , at NOADD, we
use "DCH E". After decrementing it, we test for the value

208

L

<

41

of B and if it is 0 we jump back to LOOP to continue. Like
"JNC" abcve, the command "JMZ LOOP" will jump to LOOP if the
Z flag (shewing a 0 resulted from the DCR B) is MOT set.
Hben the CCF B results in a 0 the Z flag is SET and the jump

does MOT take place.
After looping 8 times, the B register is 0, the Z flag

SET and the JMZ falls through the LOOP command (does not
perform it) to the Store in memory. Remember that we
planned to use "SHLE" to move the answer to memory. That
concludes the programming of this multiplication. You
should have a program that looks like the one on the next
page to work with at this time.

I

(
209

L

t

(

MNEMONIC

LHLO

XCHG

LCA

LXi H,0

MVI B,8

DAD H

RAL

JNC NOADO

DAD D

ACI 0

DCH'B

JNZ LOOP

SHLD

(

H2

LAB 51 SN ESO NIC ENGLISH

. .:- LHLD Get multiplicand.

Move it to DE.

Get multiplier.

Initialize partial product.

Initialize counter

Shift left partial prod.

Shift the most sig. bit to carry.

Skip if 0 in carry.

Add DE to HL. (m'cand to P.prod.)

Restores carry bit.

DCH'B Decrement counter

LOOP if 0.

Store answer in memory.

End of program.

This is the heart of the program. Our task is not

completed, however. All of those jumps and memory reads and

writes need addresses. In addition, the 8080 CPO does not

work directly on the mnemonics, but needs binary (or hexide-

cimal) ccda. That is the final stage of programming in

machine language—coding the mnemonics into hexidecimal.

As you can see, each mnemonic in the Prompt 80 manual has

associated with it a hexidecimal reprssentation in one byte.

In addition, some codes reguire additional bytes as informa-

tion for the instruction. For example, our first instruc-

tion "LHiD" is shown as 2A XXXX, whera the X's represent two

additional bytes as an address. Since we have net decided

where to put the input information, simply transfer the

"2A " to the paper with the program. We will fill in the

addresses later. New finish looking up the codes for the

rast of the mnemonics, being careful to get the additional

bytes correctly. when done, turn to the next page and

compare ycur answer tc that of the author.

210

i-

i

<

(

i

MACHINE CCDE LABEL MNEMONIC

2A Start LHLD

EB XCHG

3A LOA

210000 LO H,0

060 8 MVI B,8

29 LOOP DAD H

17 RAL

D2 JNC NOAD

19 DAD D

CE00 AC I 0

05 NOADD DCR B

C2 JNZ LOOP

22 SHLD

«3

ENGLISH

Get Multiplicand.

Put it in DE.

Get multiplier.

Initialize HL.

Initialize B.

Shift HL left.

Strip MSB of A.

Jump if carry=0.

ADD DE to HL.

Restores carry bit.

Decrement counter.

Jump if NOT zero.

Store in memory

Now that we have a program with fixed length, we can

choose a start address and fill in the blanks we had to

leave before. For this problem, set the start address to

3D39 H and assume that upon commencement of the program the

multiplicand will be at address 3E01 H and the multiplier at

3E00 H. Ke will stcre the answer back into 3E01 H when

finished.

To insert these addresses remember the discussion abcut

the process used to lead registers and that the 8080 family

of CPU's locks at information in reversed order. Therefore

the addresses should follow the instructions in reversed

tyte order. That is, instead of 3E0 1, we write 013E. The

CPD will reverse the address as a process of fetching the

information. Hence, the first line now becomes "2A013E",

indicating that the function "2A" is to be performed on

memory location 3E01 H. Similarly, "3A__ • becomes

"3A003E", and the SHLD instruction is "22013E".

That leaves only the jump addresses to examine. For this

program the start address will be 3D39 H. That means that

the first byte in the program will be loaded in 3D39 H, and

211

each following tyte goes into successive locations. To
indicate the start address, the mnemonic "OHG" (for ORiGin)
is used, with the address of the start of the program. To
compute the JUMP addresses simply count down byte-by-byte to
the JUMP destination and insert the data.

Finally, we must end the program somehow or it will
continue to execute beyond the code we wrote. If this
happens we cannot anticipats what will happen! To prevent
this trip to never-never land, we insert a command that will
perfcrn seme step we KNOW., BST 6 is the mnemonic for a
breakpoint, and can be used here to return control to the
monitor program so we can examine our results. The code for
RST 6 is MF7M and is the final byte of the program.

Number the loeatiens, fill in the jumps and then compare
your work tc the final product on the next page.

(

(
212

I

45

flüii B£HU LANG PAGE P BOG RAH
ODE LABEL MNEMONIC

3.4 2IMJL .

ADO. MACHIN

3D39 2A013E

3D3C EE

3D 3D 3A003E

3D40 210000

3D4 3 C6C8

3D45 29

3D4 6 17

3D47 D24C3D

3D4A 19

3D4B CECO

3D4D C5

3D4E C2453E

3D51 22013E

3D54 F7

ENGLISH

ORG 3D39H

Start LHLD Get Multiplicand.

3CCHG Put it in DE.

LDA Get multiplier.

LD H,0 Initialize HI.

MVI B,8 Initialize E.

LOOP DAD H Shift HL left.

RAL Strip MSB of A.

JNC NOADD Jump if carry=0.

DAD D ADD DE to HL.

ACI 0 Restores carry bit.

NOADD OCR B Decrement counter.

JNZ LOOP Jump if NOT zero.

SHLD Store in memory

RST 6 Breakpoint to monitor.

Final program, with addresses.

Now that we have the program, we are ready to enter it,

insert data in the appropriate locations, and run it. Osing

the techniques already discussed, enter the program as it is

written above. When you have put the final byte into 3D5u H

remeafcer to press the (.) key to end the input phase. When

you havs done that turn the page.

(
213

4 I

{

46
Now that the program is entered into the machine we have

tc give it some data with which to work. In this prcqram
the data is read from two addresses in memory, and the
assumption was made that the data would be placed there by
some other action external to the program itself. For the
first problem we will multiply 7 by 4, and will expect to
get 28 as a result. Osing the Display/Modify Memory key put
the 4 into 3E00 H, and the 7 into 3E01 and 3E02. Since the
8080 CPU addresses memory in inverse ordsr,, the Least
Significant Byte of the number goes into 3E01, and the Most
Significant Byte goes into 3E02. The four digit representa-
tion of 7 decimal in Hexideciaal is 0007. The first two
zeroes are the Most Significant Byte (MSB) and the 07 is the
Least Significant Byte (LSB). In the c&se of the multi-
plier, 4, the byte to insert into 3E00 is 04 H. Enter these
numbers now, and when done turn to the next page.

(

L
214

<

47

To run the prograa press the Go key, enter the address of

the prograa, 3D39, and press (.) .

The Command/Function readout should have changed TO read:

P C. 3 d 5 5. 7 F

If it does not, re-check that you have entered the
program properly. If the readout does not light, press the
SYS RST key to break the program running and return to the
turn en condition. The program should then be checked for
entry errors using the Display/Modify memory function.

The answer is in the location we stored it, 3E01 H. Look
there now, using Display/Modify Memory, and see if ycu got
the correct result. Remember, the answer is in hexidecimal
notation. You should see that 3EÖ1 has 1C and 3E02 has 00.
Putting these values together in proper order yields 001C H,
and that evaluates tc 28 decimal. If you cannot find these
values, chsck that the program is properly entered and try
again.

When Beady, turn the page.

(
215

L

tt8

(

Once ycu have the program properly running you can see

that it dees not take long to compute the answer. In fact,

it is so fast that ycu cannot really see what is happening.

To slew the process down we can use the single Step function

to move one step at a time through the program. We shall do

that in a moment, but before that we should consider what

the 8080 CPU actually does in each single step.

In the itternal prcgram of the 8080 CPU the instructions

implement micro-instructions that actually carry cut the

data manipulations necessary to accomplish the events called

for. This takes place through the fetch-execute cycle. In

each step of the program we have written the 8080 CPO actu-

ally performs manv operations, each directed by the micro-

instruction set in the CPO. Lock at the first instruction

in our program "LHLD 3E01", transformed to hexidecimal code

as "2A013E". At the start of the instruction execution, the

program counter points to the location in memory where the

first byte is stored, we gave that address as a part of the

Go key instruction. The CPU first fetches from memory that

byte, leads it intc an internal instruction register and

translates it into internal code. Since the instruction

which results needs the address of the information tc be put

in the HI register Fair, the CPO returns to the memory at

one higher location than the 2A was found and fetches from

that location the LSE of the address it needs. This process

is repeated to get the MSB of the address from the next

memory leca-ion. New that the CPO has the address of the

byte to fetch, it sends that address to the I/O unit,

directing that the byte be fetchad and placed into the

internal data register. Once the I/O unit has completed

this fetch, the -EÜ then transfars the data to the HL

register. The last step is to update the program counter to

point to the next instruction. Since the instruction "2A"

actually takes 3 bytes, one for the 2A and two for address.

216

,

-•

I

49
the program counter is incremented by 3, to point tc the
next instruction byte at 3D3C H. The fetch-sxecute cycle is
complete for that first instruction.

This cycle repeats for every step in the program. when
the instruction at location 3D54 is executed (RST 6) the
control is returned to the monitor program and the cycling
stops. In the PromFt 80 the Command/Function Group readout
shows the value in the Program counter and the value that
the program counter is pointing to. This is a function of
the mcnitcr program that is designed to aid the programmer.

New we can single-step through the program to watch the
data flow through the registers and memory.

When ready, turn the page.

(

L

217

»

(

50
Reinitialize the Prompt 80 by pressing the SYS RST key

and then enter the data in 3E00 to 3E02 H as above. Use A0
H for address 3E00, 70 for 3E01 and 00 for 3E02. In this
single step demonstration we shall multiply the numbers 70 H
(112) by A0 H <160) to get 4600 H (17920).

To single-step press the Single Step key, and enter the
address cf the start cf the program, 3D39. Do NOT press the
(.) key at the end, but press (,) instead.

The Ccmmand/Functicn Group read-out should now read:

F C. 3 d 3 C. E b

indicating the the Program counter is pointing to 3D3C, and

that that address certains the byte EB H. That is the
second step in the program we wrote. Look at the value in
the Hi register as shown in the Register Display Group. It
should read 0070, the bytes that ware in the memory location
3E01 and 3E02. To check that the Program counter has actu-
ally acved, press the Scroll Register Display key once, and
see that the Program Counter registers display 3d3c, as
expected. Press the Scroll key once and see that the DE
ragisters now have the value ddEE in them. Then press the
Scoll key once again to see the HL pair.

Now press the Next (,) key ones. Look at the HL register
pair display now. It shows the value ddEE that was in the
DE register. Press the Scroll key twice and note that the
DE register now has the value 0070, transfered from the HL
pair. The instruction was XCHG, and the instruction has
been carriad out. Press the Scroll key once to return to
the HL register pair.

Prass the Next key once. The instruction was LDA, load
the Accululator with the contents of memory. See that the A

register now has the value A0 in it. The program counter
has again been iccremented, as usual, and points to the next
instruction at 3d40 H. Press Next again.

218

u

<

(

51
The instruction at 3d40 was to load the HL pair with

zeroes. The display shows that this has been done. Press
the Next key then Scrcll to view the B register to see that
it has the loop counter 08 in it.

New all the variables have been initialized. Press the
Scroll key again to view the HL pair. The Program Counter
(PC) new pcints to the memory location 3du5, the first byte
in the multiplication loop. The byte at that address is 29,
an instruction to add HL to HL and put the answer in HL.
This doubles the value in HL. Since that is presently 0,
doubling it will not change the value. Press the Hext key

once and see that all that changes is the PC. The next
instruction, 17, shifts the Accumulator right, putting the
Host Significant BIT into the carry register. The value AO
is representative of the bit pattern 10 10 0 0 0 0. The
Most Significant BIT is a 1, so that value should enter the
carry bit of Flags. That bit will change the Flags Register
to read an edd number, since the carry bit is the 0 bit in
the Flags register, and the shift of the remaining bits in
the A register will produce a pattern 0 1 0 0 0 0 0 0, cr «0
H. Press the Next key once and see that these values show
up. Any edd number in the Flags register shows that the
carry bit is 1. /

The PC now points to 3d47, an instruction to jump to
another address unless the carry bit is equal to 1. Since
th«. carry bit IS equal to one, the jump will not take place.
Instead, the PC will change to point to the next address in
the program at 3d4A. Press the Next key and observe the
change.

The instruction at 3d4A is DAD D, the command to add the
value in the DE register to the value in the HL register,
and put the results in the HL register. Using the scroll
key note that right now the HL register • 0000 and the DE
register • 0070. Press the Next key and see that the sum of
these two shows up in the HL register.

219

-U-

(

52
The PC now points to 3dUb, an instruction to add the

carry bit to the A register and the value 0. Press Next.
Observe that unlike we planned, the 1 that we carried cut
did NCT get added to the A register. We shall come to this
wB0GM in the prograa later. It is not fatal, and does not
affect the result in this simple program. The "BUG" is in
the program to demonstrate the difficulty of writing flaw-
less code in machine language.

The PC new points to the byte at 3d4d, the decrement B
instruction. To watch it work. Scroll the register display
to the E register, and then press Next. The oe should
change tc 07. The PC points to 3d4E, a Jump unless the zero
flag is set. The Zero flag is MOT set at this time, sc the
jump occurs. Press the Next key to execute this step.

The PC now points to 3dU5, the first step in the loop
again. Eress Next. The HL pair is doubled to 00E0. Press
Kext. The A register shifts left, shows 80, and the previ-
ously Most Significant BIT is in the carry bit. Since the
Carry bit is 0, the Flags register is an even number.

Press Next. Because the carry bit was NOT SET, the jump
to NOADD occurred, and the adding of DE to HL did NOT take
place. Press Next twice. The B register has been decre-
mented to 06, and the PC now points again to the beginning
cf the lecp.

You may now continue pressing Next and watching the flow
of data. «hen the B register finally reaches 00, the jump
to LOCP at 3dUE does NOT happen, and the program continues
at 3d51, an instruction to transfer the information from HL
to the oemcry location 3E01. After that instruction is
executed, the PC points to 3d5U, a RST instruction.
Pressing Next at that point transfers control out of the
program we wrote, and sets ir. motion a seguence of instruc-
tions that begins at 0030 H. You may follow if you wish
through the seguence, but it is not germane to this course.
To stop, press the Execute/End key.

220

t

I

53
This concludes this section of the text. The BOG we

identified will be addressed in the next section of the
text. If you have not done so, you should execute the
program you have entered with the data we were working with
to its conclusion, and see that you get the correct answer.

This program not only contains the BOG discussed above,
but also has limitations on the size of numbers. To demons-
trate the limitation, what is the largest number you can
have as a result? (Hint: when all the ones are set in the HL
register, the next 1 added will recycle them to all O's.)
In addition, what should you get when you multiply 255
decimal times 512 decimal (FF H times 0200 H)? Try it and
see what you get. Finally, can the program handle negative
numbers? If so, how, and would it mean a change in limita-
tions? If net, can it be made to do so?

The answers to these, and other guestions, will be
discussed in the next section.

This is a convenient place to stop if you wish to.

(
22\

4-

i
section 4

ADVANCED OPERATIONS WITH THE PBOHPT 80

(

4.1 ADVAHCBD COHCEFTS AND. FONCTIOBS

In the previous section we left unanswered some questions

about tte program that was constructed to multiply two

integers. Those questions concerned the limitations and

usefulness cf that program. In addition, there was a BUG in

the program in that it did not restore the K register to the

original value that it had had in it. These questions and

the bug will be disccssed in this section. In addition, the

latter portions will discuss the advanced functions of the

Prompt 80 that were deferred from the first section. If you

have not entered the program to which we will refer, turn to

page 42 ard enter the program found there into the Prompt

80. This ssction will refer to page 42 and the program flow

in the Frcmpt 80 computer.

(

222

L

i

(

55

4. 1. 1 Df bugging

The purpose of the ACI 0 intruction at 3D4B «fas to restore

the carry bit to the A register so that the A register would

contain the same data at the end that it did when the

program started through the looping process. In running the

program, however, the A register was HOT restored, and ended

up with 00 H. He will now attampt to correct that bug.

The instruction ACI 0 was originally presented as adding

the carry bit, the iimediate data of the 0 and the value in

the A register together. That is the seeming definition

given on $a.qe 3-20 cf the Prompt 80 User's manual. However,

the actual function cf ACI 0 is to add the value 0 to the A

register, put the result in the A register and IF THERE IS A

CARSY, Fut it in the carry bit of the Flags register. That

is NCT what we wanted. Locking through the instruction set

we see no add instruction that adds the carry bit by itself

to the A register. So what can we do to get what we want?

Since the ACI only occurs when we go through the loop,

and we only go through the loop when the carry bit was set,

we can safely assume that if we are in the loop the carry

was set to 1. Since we can assume that, we can then add

that 1 to the A register without having to add the carry

bit. Simply change the ACI 0 to ACI 1. Now every time we

go through the loop the A register gets a 1 added to it, as

we wanted. To make the change, use the Display/Hcdify

memory function to change memory location 3EUC to 01 instead

of 00. New load any data you wish into the locations at

3E00 to 3E02, and run the program. '/ou will see that: the A

register ends up with the value originally fetched from

3E00, and that was our desire. He have de-bugged the

program.

This process of de-bugging is necessary for almost every

program written. This bug was simple to fix, but ipere often

the program has to have some bytes added or daleted or both.

Those changes may then chanqe the addresses of labels

223

{

56

further down in the program, producing even more modifica-
tions that have to be made to the program. To avoid making
too many changes to a program that has been translated- into
machine language, the programmer should design his program
very carefully, and desk-check the flow of data before he
encodes the program. In this way he can reduce the exten-
sive program modification to a minimum.

(

(
224

57

u.1.2 liiiiatioas
The program now runs, but still has limitations. The final
page of Section III listed these problems to be considered:

1. What is the largest value that can be the result of

the multiplication?
2. what happens when you exceed that number?
3. Hhat about negative numbers?

In the first question the issue of HANGE is raised. The
largest number expressable in 8 bits is 255 decimal (FFH).
That is the largest number that can be held in the A
register as the multiplier. The largest 16 bit number is
65535 decimal (FFFFH) . That is the largest value that can
be held in the register pairs, and is the largest multipli-
cand that can be accepted. However, the largest answer is
NOT the product of these two, but the same as the largest
multiplicand, 65535. That is because the same registers
hold the answer and have the same limitations as the multi-
plicand.

But what does the program produce when the limits are
exceeded? Use the program to multiply FFH times FFFFH (255
times 65535 decimal). Ths answer should be 16711425 decimal
(FEFF01H) , bat that is beyond the ability of the registers
and memory locations set aside by the program tc hold.
Since there is no prevision in the program for this sizing
error in the output, the Prompt 80 merely presses on in the
•anipulaticn of the data. It then shows the answer as
FF01H, or 65281 decimal, and gives no indication that the
capability of the program has been exceeded.

This problem of the range of accuracy of the program is
one that fust be faced by every programraer. The answer to
the problem is usually taken in two ways—a limitation on
the program is documented for the user to learn it and zhe
program itself is set up to detect such over- and under-

(
225

L

{

58

flows and to issue warning messages that this has occurred,

in integer «or* this is auch easier to do than in floating

point notations, and thus many simpler machines restrict

operations tc integers.

(

(
226

u I

i
59

The final question raised the issue of negative numbers.
The program as written can only handle positive numbers. If
we use the two's complement notation, then the positive
limits are reduced to 127 decimal in the multiplier and
32767 in the multiplicand. The negative numbers will be
represented by the binary numbers with the most significant
bit set to 1, i.e., in the multiplier by the numbers that in
standard notation would have been 128- and in the multipli-
cand by those that would have been 32768 and higher. Eut
does that make it possible to multiply negatives using this
program? Try multiplying -1 times 255 (81H times OOFFH)
The answer should be -255 decimal or (F701H). What does the
program give?

It is obvious that the program is inadequate for the
multiplication of negative numbers. Since the fix for that
problem is beyond our intention in this text it will not be
discussed further. It is sufficient to say that the
program, and indeed any program, has limitations built in to
it and that these limitations need to be understood by the
programmer and the user to prevent misuse.

(
227

i-

(

60

».2 IMAJga flIUAfifflU 21 IM PHOHPT80
The final discussion en the Prompt 80 is the description of
the advanced functions of the machine. In the discussion-en
the function of the numeric keys it was stated that the 16
numeric keys were used to enter the hexidecimal digits and
to chose the functions . Those functions selectable from

the numeric keys are:

0. Bead hexidecimal tape.

1. Write hexidecimal tap«.
2. «rite a PRO« from memory.
3. Compare a PEOH to memory.
a. Transfer PRCM to memory.
5. flove memory (block).
6. Hexidecimal add/subtract function.
7. Byte search function.
8. Word search function.

To select one of these function, you have merely to press
the appropriate numeric key with the hyphen in the command
function group display. The prompt of the letter F followed
by the number you have selected will appear in the command
function group display. For more details on the ether
parameters that must be provided, see pages 4-15 to 1-21 in
the PrcmFt 80 user's manual.

Of the functions available, the ones you are most likely
to be interested in are the Read, Brit« and Compare PROS
functions. These functions are used to transfer programs
from memory to a PRCH, from the PROM to memory, and to
compare, byte for byte, the program in the PROM and the
program in the memory. The next few paragraphs will discuss
these functions.

To prepare for this section turn the Prompt 80 OFF and
turn the pace.

>'

228

i

(

(

61
4.2.1 EgOH Operations
To insert the PROM ycu have been given into the PROM socket,

move the hardle on the top left-hand side of the socket to

the vertical position. This unlocks the socket. Examine

the PROM carefully, without removing it from the protective

foam. One end of the PROM has a distinguishing notch cr dot

on it. This designates the end of the PROM on which the #1

pia occurs. The end of the PROM with the dot or notch gees

to the back cf the sccket. There are numbers painted around

the socket to show where the 1, 12, 13 and 2t pins go. As

long as the notch or dot is at the 1, 24 end the PRCM is

inserted correctly. Now that you know which way the PROM is

to gc, ycu are almost ready to install it.

The PROM is sensitive to static, and measures tc protect

it must be taken. Avoid handling the PROM by the pins, and

if the day is such that static electricity is a problem,

ground yourself by touching the chassis of the Prcmct 80

while removing the PBCM from the protactive foam.

Remove the PROM frcm the foam, insert it into the sccket

in the prcper direction and push the locking handle toward

the back until the FROM is locked into the socket. IT

SHOULD NCT EE NECESSARY TO USE FORCE ON THE CHIP OR SOCKET

HANDLE.

When ready, turn the Fa9e«

229

-•

62
New that the PROB is safely in •the socket you can turn

the Prompt 80 back on. The display should light up exactly
as before. The presence of the PROM makes no difference in
the basic operation of the machine.

To transfer a program from the chip to the memory the #4
function is used. We shall now transfer the same multiply
program that was written earlier from the chip to memory.

First use the Display/Modify memory function to observe that
the memory locations 3D39H to 3D55H presently do not have
the program in them. Since the machine was turned off to
insert the PEOM the memory was erased and now has only

"garbage" in it.
To invoke the function press the number 4 key on the

keypad in the command/function group. The display should
show:

F 4

Now we have tc enter the address to which the PROM is to
be loaded in memory. In the Prompt 80 this is address
3C00H, the lowest address available to the user. Enter
3C00, press (,). The command/function group display should
show the number 3C00 until the (,) is pressed then it should
show:

(

F 4.

Now enter the LAST memory location to be entered from the
PROM, the last address available in memory, 3D55H. Press
the (,) key. The display again shows:

F 4.

Now we enter the PROM address for the program tc be
loaded. In the PRCM you have been given the address is
00OOH. Enter that data but do not press the (,) key this
xime. The display should show:

F 4. 3 3 0 0

230

L-

(

63
Press ths (.) key. The program will load into memory

from the FROM. The process takes a very short time and the
display will flicker when finished. The I rput/outpu-1- "group
lights will flicker as the data is transfered from the PROH

to the memory. To check that the program he•• loadad prop-
erly examine the memory locations from 3D39 to 3D55 and
compare them to the program as we wrote it. It should be
exactly the same.

To arite a program to a PROM, called in the vernacular
"BURNING a PBOM", the function F2 is used. There are a
number of restrictions on the use of this function. For
future reference the procedure can be found on pages 4-16
and 4-17, as well as a discussion on page 5-6 of the User's
manual.

231

6U
This concludes the manual on the Prompt 80 microcomputer.

There are numerous reference manuals in the Laboratory for
the sericus student of machine language programming to use.
In the next volume of the series in the laboratory you will
be introduced to software which dcas the functions of assem-
bling the unemonics and allocating the addresses for you.
These tools, called "assemblers," are an invaluable aid to
the dedicated programmer. It is these tools which allow
rapid development cf higher languages, and increase
programmer output.

(232

L

APPEND!I D

SDK-85 TUTORIAL

**

INSTRUCTIONAL L

SDK-85

***** ******* *** ***

ABORiVTORY ***

(
233

L i

(
TABLE CF CONTESTS

INTRODUCTION Ü

2.

USB Eäas
SDK-85 SISTEB DESIGI KIT 1

Th€ SDK-85 SYSTEM 1
CAUTION 2
ECÜIEM2NT NEEEED 3
FUNCTIONAL COBFONENTS H

POWER SUPPLY SECTION 5
TTY INTERFACE 6
CLOCK CIRCUITS 7
ADDRESS DECODER 8
CPU 9
RIAD ONLY MEMORY 10
RAM I/O 11
KEYBOARD AND DISPLAY 12

NUMERALS AND THE EXAM REG KEY 13
RESET KEI U
SINGLE STEP KEY 15
SUBST MEM KEY 16
NEXT KEY 17
VECT INTB 18
GO KEY 19
EXEC KEY 20

CLOSING REMARKS 21

(23«*

i_

i

(

IHTBODOCTIOH

Welcome to the Instructional Laboratory. In this laboratory

you nay work with digital devices on a level from logic

gates and the elementary electronics of computers to the

fully integrated level of advanced microcomputer systems.

Through this series of texts you can progress from little

cr no knowledge of digital equipment to a working famil-

iarity with advanced Automated Data Processing. However,

this course of instruction was not designed to make an

expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

•ore serious student other books and reference manuals are

available in the Computer Center Library and the Knox

Library.

1§SM lliEJ 20 gONJINOJ, TJJR.B THE PAGE.

(
235

-*

(

(

u

236

Section 1

SDK-85 STSTEfl DESIGH KIT

1.1 THE SUSläi SYSUJ

The SEK-85 microprocessor development system is designed

around the INTEL 8085A family of integrated circuits. This

set of components represents a major technological improve-

ment ever it's predecessor, the 9080 family. In the interest

of retaining its investment, INTEL dasigned the 8085 series

to be upward compatible with all existing 8080 devices and

software. What this means is that any equipment and programs

thaz were developed for the 8080 will function (and do so

more efficiently) on the 8085A. The 8085A family was devel-

oped with newer technology and thus only 3 integrated

circuits will replace 26 components which were required in

an 8080 circuit that performed the same job.

The 8085A is a much faster CPU than the 8080, and it

provides the user with two additional instructions.

MM BJADI TO CONSJH0E, T0R.fi TjjE PAGE

{
1.2 CAOTICN

Before ycu apply any electrical power to the SDK-65, . you

should read this page in its entirety.
In order to use the SDK-85 you must provide a source cf •5

volts DC electrical power. In the Instructional Laboratory
this »ay be accomplished by the use of the DIGI DESIGNER
console which has a built in power supply.

First, ensure that power to the DIGI DESIGNER is turned

off, ther connect the red wire from the SDK-85 power supply
section to the +5 vclt terminal post on the DIGI DESIGNER.
Connect the green wire from the SDK-85 to the GND (ground)
terminal of the DIGI DESIGNER. Verify your connections
before applying power to the DIGI DESIGNER. Ycu can now use
the SEK-85 for experieentation and design.

WHEN RE AD I TO CONTINUE, TORN THE PAGE.

(

L

237

i 1.3 gQOIPBEHT NEEDED

Ycu may need the following itams in order to complete

this tutorial:

i-

INTEL SDK-85 User«S Manual

Microcomputer Experimentation With The
INTEL SDK-85 &y Leventhal and Walsh.

INTEL MCS-85 User's Manual

INTEL SDK-85 Design Kit

DIGI-DESIGNER Consols

(

If ycu dc not have these items , pleass acquire them from

your instructor.

WHEN HE JE I 22 CONJINOB, TJJHN JHE PAGE.

(

238

(

u

1.4 POBCTIOHAL COHjCHBHTS

In order to familiarize you with the SDK-85, it is appro-

priate that you first gain son« knowledge of the component

parts of the design kit itself. Therefore, at this time,

place the SDK-85 where you can easily refer to it while you

are reading.

Notice that the right side of the board is semi-pcpulated

with electronic devices and the left side is unpopulated.

The left side is available for design, experimentation, and

expansion of the basic board. advanced students may find a

use fcr the left side of the board, and for guidance are

referred to the publications listed previously.

WBgM BBJfil 32 COSTJgOB, TORg T.S2 EiSI-

239

{

(

i.

240

1.4.1 ECJlg SPPPLT SECTIOB

The ECHEB SUPPLY section is Located at the top "right

corner of the circuit board. It is the place that electrical
power fron an external device is provided to the SDK-85. As

discussed earlier, *5 volts ic and a return path (ground)
are required.

If you have net done so, you may now connect the SDK-85

to the DIGI DESIGNEE. Ose the instructions in the CAUTION
page at the beginning of this tutorial.

WHgH FEJDJ TO CONTIHOE, TURB TB.E EASE.

{
1.U.2 TJT IgTERF|CE

Slightly below and to the right of the power supply
section is a group cf components labeled "TTY INTERFACE".
These components form the interface circuits needed to
connect tte SDK-85 tc a Teletype terminal. This feature is
not implemented in this laboratory, so no more will be said
about it.

HHEM BB JCJ TO CO ST.INOE, TOBN THE PAGE.

(
2U1

Ir

{
1.4.3 CLOCK CIRCOI1S

Near the center of the board, and above the large 'inte-

grated circuit labeled "CPU", you will see some discrete
circuit components and a flat metal box that is -he crystal.
These items form the extsrnal timing circuitry for the cper~
aticn cf the 8085A CEO.

This area is one cf the major improvements of the 8085A
over the 8080 family cf components. The 8085A contains the

majority cf clock circuitry en the integrated circuit
itself, while the 8C80 required many more external compo-
nents to generate the necessary clock and timing signals.

WHEN BEADY TO CONT..JN0E, TORH THE PA.SE.

(

L

242

ft

1.4. 4 »DgBESS EgCOEER

To the right of the timing crystal is the small .inte-

grated circuit Known as the ADDR2SS DECODER. The functicn of

the decoder is to determine what address in random access

memory (BAM) the CPU is trying to read from or write tc. A

chip enable signal is then generated to select the appro-

priate memory chip. In addition, the address decoder will

enable the read only memory (BOM) and the keyboard decoder

circuitry when they are selected by the CPU.

MM ÜJÄJ3I 52 COHTIHOE. TOEH THE PAGE.

243

L.

t
1.1.5 cio

The 8085A Central Processing Unit (CPU) is located .below

the timing circuitry and the address decoder. It is the
large, 40 pin integrated circuit labeled CPU on the circuit

board.

As in all computers, the CPU is the "BRAIN" That performs

the werk for the system. All other components are in support
of the CEO chip. The 8085A CPU will control the input and
cutput cf instructions and data. It also de-ccdes and
executes instructions and acts as the system controller.

For a complete set of 8085A instructions, see the liCS-35

User's manual.

WHEH BEAD! TO CO NT I. N DE, TUBS TBE PAGE.

(
244

u-

10

1.4.6 BIAD ONLY BEHOBT

Directly below tfce 8085A CPU chip you will find the

system Bead Only Hemory (BOB) chip. This component is

labeled "FBCB (BOB) I/O" and contains the system monitor.

The monitor will be discussed later in this tutorial.

Also provided on this integrated circuit are two ports

which car be individually programmed as either input or

output ports.

The HCB resides between memory address locations 0000 and

07FF (hexadecimal) . It is a permanent or non volatile memory

chip and retains its information whan electrical power is

removed.

«HE» BE*DJ IQ COOT I HOE, TORB THE PAGE.

(
245

-U-

i

(

u-

11

1.4.7 BAM 2Z2

Belcw the ROM you will see a 40 pin integrated circuit

that is labeled "RAM I/O". This is 2K bits <K=1024) of

random access memory, which equates to 256 words cf 8 bits

each. This »enory is NOT permanent and will lose any infor-

mation stored in it if power is rsmoved. The system 3AM is

used to store instructions for the CPU to execute, data to

be operated on, and the results after computations are

performed.

The installed RAM resides at memory locations 2000 to

27FF (hexadecimal). You will see a place above ard below

this mencry chip which is provided for expansion by the

addition cf two more HAM chips.

BHEB HJADJ TO CONTIM0B. TORI THE PAGE.

246

12

1.4.8 KEYE01BD iHD DISPLAY

The remaining section of the board contains the Keyboard

and light eirittitg dicde (LED) display device. The two inte-

grated circuits perform the keyboard decoding and provide

the correct signals to the display. The group of discrete

components directly above the LED unit provides the driver

voltages necessary fcr the LED segments.

The display consists of a six-digit LED, and can be used

to view input or output data, CPD registers, instructions,

and the contents of memory locations. The display can func-

tion under user control or by CPD commands. The different

ksys will be explained separately.

jjfjgM BEADY TO CONTIMOE. TORI THE J?AGE.

m

(
247

u

13

i 1.4.8.1 HOHERALS AND THE EXAM BEG KEY

On the bottom right corner of the SDK-85 you will find 2U

white keys arranged in 4 rows of 6 columns. The 4 right-mcst
columns are the Numeric Keys and are labeled "0" through "F"
(Hexadecimal). You will notice that some of the numeric keys
have additional writing on them; for instance, the 8 key is
also marked "H". These keys can be used in conjunction with
the EXAM REG (EXAMINE REGISTER) key to determine the
contents of the CPU registers. See below for a listing of
all dual function keys. As an example, pressing the EXAM
REG key followed by the 4 key will display the contents of
the SPH register which is the eight most significant bits of
the CPO stack pointer (stack pointer high) .

The keys A through F will also display CPO register

contents when used with the EXAM REG key, but they are not
double marked because the registers they are associated with
correspond to their Hexadecimal notation. Key A can repre-
sent the number 10 (Hex) or register A of the CPO.

Functions Of the Keys

KEY

—— ' • • •-..... -—

FUNCTION

3 I (Interrupt)
4 SPH Stack oomter-high) c SPL Stack pointer-low)
6 PCH I Program counter-high)
7 PC i Program counter-low)
8 H f eraory address-high)
9 L Memory adiress-low)
& A I Accumulator)
B B < Cpu register B

.CPO register C C C i
D D CPO register D
E E i CPO register E
F F I CPO flags byte I

(

"HEN HEADY TO CONTINUE, TORN THE PAGE.

248

-L-

14

i

(

1.4.8.2 RESET KEY

The RESET key is used to generate a control signal that
will cause the coaputer to enter a 'start-up' prograa. when
the RESET key is pressed, the display will read - 80 85 and
control of the coaputer is passed to the aonitor prograa in
the
systsa HCH (Read Only Memory) . The Monitor prograa will

allow the user to place programs and data in aaaory, execute
prograas, exaaine and aodify the contents of RAM, and
exaaine the contents of the CPU registers.

The RESET key also resets all registers and flags, sets

all I/O (Input/Output) ports to Input aode, and disables
interrupts. If you should want to exaaine CPU registers or
flags after executing a program, DO NOT PRESS RESET after
the prograa is finished.

IHEJ BEADY TO CONT.IJI0E, TOES TgE PAGE.

(
249

1 mi

I

(

(

15

1.4.8.3 SINGLE STEP KEY

The SINGLE STEP key «ill allow you to execute a program

one step at a tine. Pressing the SINGLE STEP k.9y will first

cause the computer to enter the single step mode. Then

pressing the NEXT key will cause execution of the instruc-

tion that was in the LED display, and the display is updated

to shew the next instruction to be executed. This mode of

1HEH BEÄDJ 22 £OJSIS5I# 22S5 SIE PAGE.

250

operation is good for de-bugging and to allow examination of
CPO registers and flags at a specific point ia the program.

16

1
1.4.8.4 SOBST HSU KEY

The SUEST MEH (Substitute Memory) key is used to examine

the contents of memory. In order to examine a memory loca-

tion, the SÖBST HEM key is pressed and then the Hexadecimal

address of a memory location is ksyed in. As you enter an
address, notice that the address is displayed starting on

the right side of the display and moves to the left as
subseguent digits are entered. Once an address is entered,

the contents of that address are displayed when the NEXT key

is pressed.

It is important that you remember that all addresses have

4 digits and all data has 2 digits. The display always indi-

cates information in Hexadecimal form.

jIHEH BEIEl 10 COH£IHOE, TOSH IHE PAGE.

(25 1

L

_

(
i

1

(

1.4.6.5 NEXT OX

After an address has been entered by

17

key, the contents of that address is displayed when the NEXT

key is pressed. Fron that point on, successive presses of

the NEXT key causes the contents of succeeding memory loca-

tions tc be displayed.

The NEXT key also functions as the single step execution

key as mentioned earlier in this tutorial.

MM fJAEJ, TO CO NT. I HOE, TÜRM % HE PAGE.

(

(
252

u

18

i
1.4.8.6 VECT INTE

The VECT INTR (vectored interrupt) key is used to cause a

keyboard initiated interrupt to a program in execution.

This key provides a jump to a Ria location which must held

the starting address of the interrupt handling routine. If

this does not make sense to you—don't worry. This feature

is normally used at a more advanced stage of programming.

(

WHEN BEADI TO CONT.JN0J, TORI THE £AGE.

(253

i-

19

1.4.8.7 GO KEY

The GC key is used is conjunction with the EXEC key to

tell the computer to execute a program. First the GO key is

pressed, then the starting address of the program is

entered, and the EXEC key is pressed. At this pcint the

computer attempts to execute the program you specified. The

GO key simply tells the computer to go to an address and do

»hat it is tcld to dc by the contents of that address.

«HEN HEJDJ TO COMTTNOE, TOBH THE PAGE.

(
254

u

20

{
1.H.8.8 EXBC KBY

The EXEC (execute) <ey tells the computer that it should

execute a program. As already mentioned, the GO command
would have already been used to set the computer to the

starting address.

«HEB BEACI TO. COMSJJjOI, TOSJ TjJE £AGE.

t

(
255

i

(

section 2

CLOSIHG REMARKS

By this time, you should have some familiarty with the

features and functions of the SDK-85. In order to gain seme

actual experience, please perform the laboratory experiments

outlined in the Leventhal and Walsh book. That book F-o'ides

an excellent presentation of the SDK-85 and the 8085A

assembly language programming commands.

In addition, you can learn how a computer obtains data

from an outside source, outputs data to an external device,

responds to interrupts, and executes programs. The book

provides examples of binary, hexadecimal, and decimal arith-

metic as well as logical comparisons such as AND, OR, and

NOT.

Additional information can be obtained from the t*o INTEL

books provided.

Ycu are now invited to turn on the power and begin

assembly language programming on the SDK-85.

(
256

V

JEPEHDH E

SYBEX SELF-STUDY TAPE LIBRARY

+ **

**

INSTRUCTIONAL LABOBATORY

SYBEX

SELF-ST

LIBfiAR

ODY

Y

MICROPROCESSOR COURSE

(
257

i.

{
TABLE OF CONTENTS

Section

1. IHTBCDÖCTIOH
2. LIST 0? SELF-STUDY HICBOPBOCESSOB COOBSES AVAILABLE

£££6

. 2

. 3

Seminar 3
Seminar B3
Seminar B5
Seminar B7

Designing k Microprocessor System . . <*
Military Microprocessor Systems ... 6
Eit-Slice 8
Microprocessor Interfacing Technigues 10

(
258

I

Section 1

INTHODÜCTIOH

The Sybex Self-Study Library is a set of independent srudy

courses prepared by Sybex, Incorporated of Berkeley,

California. Each course on microprocessors consists of a

set cf cassette tapes accompanied by a t*xt. The time

required to complete each course varies frcm 2.5 hours to 12

hours. These courses require a fundamental knowledge of

nicrccomputer components and architecture, and may be

beneficial for concurrent study with NPS courses: EE-28 10,

CS-3010, and CS-3200.

When a course of study has been selected, check cut a

cassette player and the appropriate tape / text set from

In-224. The student may wish to bring pencil and paper for

taking nctes. Please do not write in the text books.

(
25 9

u

Section 2

LIST OF SELF-STUDY MICBOPBOCESSOR COURSES
AVAILABLE

51 Introduction To Microprocessors

52 frcgramming Microprocessors
53 Designing A Microprocessor System

SB1 Microprocessors

SE2 Microcomputer Programming

SE3 Military Microprocessor Systems

SE5 Eit-Slice

SE6 Industrial Microprocessor Systems

SB7 Microprocessor Interfacing Techniques

S10 An Introduction To Personal And Business Computing

This lab currently has available courses S3, SB3, SB5,

and SE7. A brief overview of each course available in this

lab fcllcws.

(

260

Lr

2.1 SgBg£kR 3 DESIGNING A HICHOPHOCESSOR SYSTEM

Presented by Rodnay ZaJcs

Time required: 2.5 hours

(

(

This seminar addresses how to interconnect a complete
•icroprocessor system, wire by wire, including: Read Only
Memory (BOH), Randcm Access Memory (RAM), Programmable
Input-Output (PIO) , Universal Asychronous Receiver
Transmitter (UART) , Microprocessing Unit (MPU) , and decks.
Additionally, tradeoffs in addrsssing techniques and techni-
ques applicable tc all standard microprocessors are
discussed.

1.

TOPIC

Comparative

Microprocessor

Evaluation

2. System Component

Characteristics

and Interfacing

MATERIAL COVERED

-Comparisons of Microprocessor

classes including:

-4 Bit Microprocessors

-8 Bit Microprocessors

-16 Bit Microprocessors

-Bit Slices

-8008 vs. 8080 CPO

-AMD Microprocessors: 9080

-Z80 CPU vs. 8080

-Motorola 6800

-Intel 8085

-Intel 8 04 8 / 87 48

-Static and Dynamic RAMS

-ROM»s including Field-

Programmable (PROM), Fusible

Links, Reprogrammable Memory

(EPROM) , and Electrically

Erasable ROM (EAROM) .

261

L

3. System Design

tt. Systeas Development

-UART

-PIO

-Direct Memory Access (CMAC)

-Programmable Interrupt

Controller (PIC)

-Programmable Interval Timer

(PIT)

-Asynchronous and Synchronous

Interfacing

-Typical system organization

-Typical microprocessor pinouts

and signals

-Connecting a system: i.e. CEO,

Multiplexing, Data Bus,

Address Bus, Memory, I/O

-Standard microcomputer

architecture: 6800, MCS-35

-One and two chip systams

-Expanding the memory

-Three I/O techniques: Polling,

Interrupt, and DMA

-Cost / performance tradeoffs

-How to speed up development

-Hardware cost analysis

-Basic software development

-Software costs

-Typical time-sharing prices

-Use of emulators in developing

a system

-Debugging aids available

(
26 2

L
-

I
2.2 SEMJHÄB Bl MILITARY MICBOPBOCBSSOR 5TSTEMS

Presented by Rodnay Zalcs

Time required: 6 hours

(

This seminar addresses topics on military or severe envi-

ronment microprocessor systems utilized in military

avionics, aerospace, naval, and industrial applications. The

goal cf tie course is to cover all the main concepts, tech-

niques, and some simple systems used in such militarized

systems. Problems normally encountered in such designs are

addressed and typical solution principles and practical

implementations are proposed.

TOPIC

1. Technical Introduction

2. LSI Technologies

3. Militarized

Microprocessor

Systems

MATERIAL COVERED

-Definitions of terms

-Main goal is to underline the

specific properties cf seme

LSI technologies as they

relate to possible choices of

equipment.

-Which kinds of technologies

may be radiation hardened

-Which kinds of technologies

will be suitable for the

portable systems such as

aerospace applications.

-Several typ ical m ilita rii ed

militarized boards are

presented.

-Suitable fe atures sind design

weaknesses o f these boar ds are

covered.

263

{

i

i». Militarized

Microprocessors

5. Standardization

6. Building a system

7. Applications

8. Reliability

9. Testing

10. summary and
Perspective

-Which microprocessor chips
(components) qualify for
military applications.

-Guidelines available for
selecting such equipment and
how to use the guidelines in
choosing the components
utilized in the system.

-Procedures normally used to

make the system ruggedized and
resistant to the environment
as per military specifications

-Various architectures used for

military applications are
discussed.

-How to measure and predict
reliability.

-Methods used in military
contracts for measuring and
predicting reliability.

-The main concepts and testing

techniques to ensure that
systems meet specifications
are covered.

-The evolution of such products

-What expectations one may have
of forthcoming designs.

-Differences between military
systems and the current
commercial/industrial systems.

(

U-

264

2.3 SEniNAJ B5

Presented by Rodnay Zaks

Tiae required: 6 hcurs

(

The goal of this course is to show you how to use

Bit-Slice ccaponents to iapleaent efficient coaputer archi-

tectures with both traditional and non-conventional

Eit-Slice applications.

The purpose of this course is:

1. Tc explain what Bit-Slices do and why they axist.

2. To deaonstrate the procedure for designing with

Bit-Slice.

3. To survey Bit-Slice devices on the aarlcet.

4. Tc survey the applications of Bit-Slice davices.

TOPIC

1. Introduction

2. Brief history

cf CEO Design

3. Bit-Slice Principles

U. Bit-Slice In Detail /

Building with Bit-Slice

5. ether Bit-slice

Devices

MIIJÜAL COVERED

-Definitions of teras.

-The evolution of Bit-Slices

-The technological principles

behind the architecture

iapleaentad in Bit-Slices.

-How to build a coaplete high

perforaance central processing

unit using an AMD - 2901

Bit-Slice chip.

-Bit-Slice devices available on

the aaritet, their aerits and

applications.

(
26 5

U- —»

i 6. Bit-Slice Applications

7. Development Aids

8. Conclusions

9. Appendices

-Son-conventional applications
-Cascaded slices on data paths

paths for purposes such as
very efficient high speed
arithmetic word processing,
string processing, and multi-
channel memory searches
through multi-port memories.

-Simulators, PROMS, Assemblers

-Questions and answers.

-Reference data on technologies
circuitry, and components.

<

(

266

L.

«

10

2.4 £2B11ÄM 52 MICROPROCESSOR INTERFACING TgCHMIgaES

Presented by Rodnay Zalcs

Time required: 6 hcurs

(

The gcal of this course is to provide a comprehensive

look at all the basic techniques required to interface a

aicrcprccessor system to the most commonly used peripherals.

The student will learn:

1. Hew to assemble, interface, and connect a system.

2. Hew to assemble a complete CPU.

3. Input / output techniques.

4. Basic interfacing.

5. How to connect the peripherals: keyboard, LED, tele-

type, printer, cassette, floppy-disk, and CRT display.

IOEIC 3AIERIAL COVERED

1. Introduction

2. CEO" Interfacing

3. Input / Output

4. Peripheral Interfacing

-Basic concepts.

-Assembly of the basic micro-

computer board with the micro-
processor clocks, drivers,
memory, etc.

-Connecting the basic beard
with all the peripherals.

-Review of basic input / output

techniques and interconnects.

-Interfacing with keyboards,

LED's, teletypes, prin+ers,
floppy-disk, cassette, and CRT

-Techniques and difficulties
are addressed.

(
26 7

JU

i
5. Communications

6. Bus Standards

7. Testing

8. Evolution

11

-Problems and solutions
available for interfacing with
communications equipment,- time
division multiplexing, modems,
data links, etc.

-Solutions available to

simplify interfacing by use
of standardized buses.

-The IEEE i»88, 583 CAHAC, and
S-100 hobbyist buses are
discussed.

-Brief coverage of testing and

troubleshooting techniques
associated with interfacing.

-Summary of the trends of

evolution and predictions cf
future interfacing techniques.

(
268

(
lEPBHDH I

HEiTHKIT H-9 TEBHIHAL TUTORIAL

(

**

#**

• **

INSTRUCTIONAL L

E1ATHKI

H-9 TERMI

ABOBATORY ***

T ***

HAL ***

(
269

(

(

(

TABLE OF CONTESTS

INTRODUCTION Ü

Section gage

1. HIATHKIT H-9 TEHHIHAL 1

Introduction 1
Keys 2

2. COMMUNICATIONS WITH THE IBB 3033 AT NPS USING THE . . <l

270

L

i
INTBODUCTIO»

Welcome to the Instructional Laboratory. In this labora-

tory you nay work with digital devices on a level from logic

gates and the elementary electronics of computers to the

fully integrated level of advanced microcomputer systems.

Through this series of texts you can progress from little

or no knowledge of digital equipment to a working famil-

iarity with advanced Automatsd Data Processing (ADE) .

However, this course of instruction was not designed to make

an expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

more serious student other books and reference manuals are

available in the computer Center Library and the Knox

Library.

(
271

u

{

(

(

i-

Section 1

BEATHKIT H-9 TERHIH&L

Again, the connector is firmly attached by screws on this

end, and cnly fits cne way.

If the connectors are firmly attached, turn the terminal

on using the on/cff switch on the back of ths machine. The

terminal will warm up in a few moments and the cursor on the

screen will be visible. While waiting for the terminal to

warm up, check to see that the baud rate switch on th6 back

of the terminal is set to "300". The "Baud rate" key on the

keyboard shculd be dcwn (depressed) . If the "8aud rate" key

is UF, the baud rate will be 110, but if it is DOWN, the

rate selected on the hack (300 baud) will be selected. The

modem is designed fcr 300 baud and will not work at any

ether speed. The terminal itself is capable of 1200 baud.

272

1. 1 I »HO DOC TIOM
The Heathkit H-9 terminal is a dumb terminal with an

internal ES-232 port that enables it to be used with a HODEM

to communicate to any computer similarly equipped. The

display is 80 columns wide, 12 lines high, upper case

letters cnly. The screen is a white on black, with a

protective cover. A repeating key, separate line feed and

carriage return key, and an on/off line key make this a

versatile terminal.

To use the terminal, ensure that the small connecter on

the back of the terminal is securely locked in place. (This

connector is kept in place by a locking tab. It is unlikely

that it should ccme lcose. It is also keyed so that it can

te installed in cnly cne way.) The other end of the cable

attached to the connector should be attached to the modem.

2

To get this speed, move the switch on the back of the

terminal frcm the 300 position to the "preset" position. In

that position, the baud rate key will select 110 baud when

OP and 1200 baud when DOWN.

f

1. 2 KJ YS

By now the terminal should be warmed up and ready to use.
The top row of keys are function keys. The functions are:

Baud Fate—already discussed

Full Duplex—OP for half duplex, DOiN for Full duplex
off Line — OP for teminal on line, DOWN for Off line
Xmit Eage—The page, as displayed, is transmitted, starting

at the cursor and continuing to the end of the
page.

Elot--a diagnostic key, no function in normal use.
Auto Carry--0P for"the cursor to stop at the end of a line,

DOWN for the cursor to continue on the next line
automatically.

Break—Terminates the Xmit page function, transmits a
continuous "Space" at the serial output. Osed
tc interrupt tha sending computer from the
terminal.

Erase Page—erases the page, returns the cursor to the upper
left corner of the screen.

Erase EOL—erases the line the cursor is in from the cursor
position tc the and of the line.

(
273

k-

In addition to these keys, there are control keys in the
lower part of the keyboard as well. These keys are:

ESC —This key transmits an ASCII escape code.

CTRL—used to transmit special control codes.
SHIFT—Shifts from UPPER to lower case (Note: this is

the reverse of a normal typewriter. In addition,
the display does NOT show lower case letters.)

SCHOLI—after 12 lines are entered, if this key is
depressed, an additional input will move
the top line out and move the remaining 11 up one
line, creating a new blank line at the bottom. If the
key is OP, the screen will not scroll and additional
data cannot be entered.

Line Feed—the cursor will move down one line and the ASCII
character for LF will te transmitted.

Return—mcves cursor to the first position of the line it is
currently in, transmits the ST ASCII code.

Short Form—when DOWN, the display is changed to 12 lines, u
columns of 20 characters. When UP, the display is 80 X
12 characters.

Rub Out—transmits a DEL ASCII character.
Eept—when used with another key, this causes the same

character to be transmitted until the key is released.
Normally the keys will transmit only one character for
a keypress.

Home — returns the cursor to the upper left position, does
net erase screen. Not transmitted.

Arrows—move the cursor the direction pointed to, one
position per keypress. Not transmitted.

(

274

(

(

section 2

COMMUNICATIONS ilTH THE IBM 3033 AT NPS USING THE

H9 TERMINAL

1. Turn en the terminal, checking to see that 300 taud rate
is selected.

2. Turn en the modem.

3. When the CRT has the cursor visible, the terminal is
warmed up and ready to use. Make sura that the FULL DUPLEX
button is DOWN (Full Euplex) and that the modem is selected

for Full duplex as «ell.

H. Dial the numbsr of the NFS IBM 3033 (presently x3025).

5. When the tone is heard, cradle the handset in the modem

with the cord at the end marked for it.

6. The screen should begin to display the following aessage:

"VM/370 ONLINE".

7. when the message is fully visible, press any letter key

on the keyboard.

8. The IBM will respond with a "!•• and then a "." (*his is

the indication that the computer is ready to receive input.

9. Logon using your account number exactly as at a terminal
in the center "L ####P", followed by "RETURN".

10. Ihe IBM will respond by presenting the message, "ENTER
PASSWORD", then type »********•«, return and overtype

"HHHHHHHH" and then return again and overtype "SSSSSSSS".
(On a Decwriter this produces a blob character like this s.)
This serves to protect your password on that device, but
does net protect it en the terminal.

275 *

i

(

11. TyF6 your password followed by a "RETURN" and the
console will eventually respond with a signon message and
whatever profile exec's you have in your account. Nota -hat
some cf the execs are very slow to start, and may raquire
prompting with a keypress of some sort. Eventually the
machine shculd yield the "8;" message, followed by the "."
prompt that you may enter data.

12. For information, if this is your first contact via tele-

phone, type "Q TERM", RETURN and see what characters do what
functions. Particularly note which key is the character
delete key, since this is the key that you must use to
"erase" your typing mistakes.

13. FLIST and XEDIT are NOT available over the modem, tut
LIST and EDIT are. LIST produces a list of file names, with
the usual ability to define the list by adding
"LIST <filename> <filetype> <filemode>".

14. EDIT is a one-line text editor that uses the XECIT

commands that work on one line—in addition, CLocate,
CFirst, CHange, etc, work. The display is limited to one
line at a time, but you can type more than one line at a
time by using "t#w, where the # is the number of lines to
type. Numbers alone will move you up or down the file
appropriately.

15. Because the terminal does not display lower case
letters, ycu may be surprised by the output in upper and
lower case. The terminal CAN send lower case, and does so
when the SHIFT key is depressed. This is the reverse of a
normal typewriter, and is difficult to use for most people.
If you intend to use the EDIT function to create text files
for SCRlFTing, then you would do better with a different
terminal than the H9.

276

i
APPBNDII G

BIATHKET B-89 HICROCOHPÜTEH I0TOBIAL

*** INSTRUCTIONAL LABOBATORX

EEATHKI

H-89 ÖICROCO

T

MPÖTER

277
I

{
T1BLE OF COHTEHTS

INTRODUCTION 11

Section page

1. I1TRCE0CTEON TO THE H-89 1

Description of the H-89 1
Powering Op the H-25 Printer and External Drives . 1
Pcwering Op the H-89 3

2. CE/M 5
Basics 5
Control Characters of CP/M 8
Utilities 8
Powering Down the System 10

(

(278

(

(

IHTBODÜCTION

Welccne to the Instructional Laboratory. In this labora-

tory you may work with digital devices on a level from logic

gates and the elementary electronics of computers -co the

fully integrated level of advanced microcomputer systems.

Through this series of texts you can progress from little

or no knowledge of digital equipment to a working famil-

iarity with advanced Automated Data Processing (ADP) .

However, this course of instruction was not designed to sake

an expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

more serious student other books and reference manuals are

available in the Computer Center Library and the Knox

Library.

279

(

in this manual yea will be given a short course on the
H-89 Microcomputer frcm Heathkit and the H-25 printer. In
addition, you will be given a short course in the operating
system which is used on that machine, CP/M from Digital
Besearch, Inc. It is strongly recommended that yoa read

this entire text before turning any of the eguipment en or
removing any of the diskettes from their jackets. If you
are not familiar with the use of floppy diskettes, you
should pay particular attention to the suggestions on the

next to the last page of the text.
It is not the intent of this course to make you an expert

cn the intiiate workings of the H-89, nor is it designed to
make you an expert en CP/M. However, it is designed to
provide ycu with sufficient information to allow ycu to work
comfortably in the laboratory with the CP/M system and the
H-89. äS ycu use the system your confidence should grow.

(280

(

Section 1

IHTBODUCTIOH TO THE H-89

(

1.1 DBJCBIfitlOH 21 2HE §^89
The Heath H-89 ptccessor is based on the Z-30 CPO from

Zilog, Inc. The operating system that the Laboratory has

purchased is the CP/H system from Digital Research, Inc.

This system is popular, and has the clever design that it

supports transportable programs. A program written for CP/H

will run on any machine that has CP/H, regardless of manu-

facturer, as long as it does not violate the rules cf stan-

dard CP/H. In the commercial market there are ever 500

programs available frcm vendors to run under CP/M.

Before applying power to the H-89, aaka sure no diskettes

are in any of the drives, since the application of power to

a drive while

a diskette is in may damage the diskette or alter the data

recorded en it.

(

1.2 POHBBING OP THE H-25 PBIHTEB AHD EXTEBHM. DRIVES

Tc turn on the Heath H-89 ycu need to turn on the H-25

printer and the external disk drives first. This is a gcod

rula for any system--power the peripherals first. The power

switch fcr the H-25 and the external drives are on the back

of the respective unit. Prom the front of the printer the

switch is in the rear upper right corner, set in a small

indentation of the outer case. On the external drives the

switch is also on the back, in the lower right side. In

each case the switch is a rocker switch. Position the

switch tc the OH position. On the printer the lights on the

ccntrcl panel will light, and the ribbon begin to wind to

28 1

i

(

(

the start position. On the disk drives there is no indica-

tion, but you may te able to detect a slight hum from the

transformer in the power supply.
The control panel on the front right corner of the

printer has 7 buttons and H lights for control and indica-
tions. The ON/OFF LINE button switch alternately places the
printer in an on-line and off-line condition. In the

cn-line condition the printer will accept data and in the
off-line condition it will not. Note: to operate the
"form1' switches of the printer it must be OFF-LINE. Ihe
TEST switch allows ycu to test the printer operations. Ir.
the interest of the laboratory only the operator should test
the printer. As a user you should not have to operate the
test switch. See the operation manual for the printer for
details. The CLEAR EUFFER switch has two functions: if you
press it for less, than about 1/2 second it will clear the
buffer of the printer; if you hold it in more that 1/2
second it will PRINT the buffer, then clear it. The RESET
switch will reset any alarm from the printer and restart it.
This switch is used to reset the printer after an out-cf-
paper, jammed paper or fault condition. The FOPMS ALIGN
switches will move the paper in the direction of the arrcws
near them. Use these switches to move the paper one line at
a time in the direction of the arrow. These switches can be
used to align the toF of the paper with the print head. The
TOP CF FOFB switch is used to advance the paper to what the
printer thinks is the top of the next page. Once there, use
the FCRMS ALIGN switches to actually line up the print head
with the top of the paper. From that point on the printer

should keep track of the top of the page.
The PCKEF light indicates that power is applied to the

printer. The ON LINE indicator is lit whenever the printer
is ready to accept data from the computer. The PAPER indi-
cator indicates either an cut-of-paper or jammed paper

282

(

3

condition. The FAULT indicator lights when the print unit

(inside the printer) is open, the carriage is in an over-

travelled condition (beyond physical limits) or the printer

is overheated. IP THE FAULT LIGHT COMES ON SEEK ASSISTANCE

EEFORE CONTINUING TO OPERATE. UNLESS THE FAULT IS CORRECTED

THE PRINTER MAY EE EAMAGED.

1.3 POWERING UP J.HE B>89

Once the printer is on and operational (the POWER and

CN-LINE lights lit only) and ehe external drives are

powered, you may power up the H-89 itself. The power switch

for the H-89 is in the back, at the right side of the

machine as seen from the front. Again, a rocker switch is

use for the CN/OFF switch. Move the ON/OFF switch tc the ON

position. The machine should issue a single beep, the disk

drive may turn momentarily, then the screen will light up

Kith the single prompt in the upper left corner, "H:". This

indicates that you are in the internal monitor program of

the terminal.

Load the SYSTEMS disk that ycu got from the operator into

the external drive left side slot, labeled "A Drive," with

the cut cut notch cf the package down, the oval slot

pointing toward the back of the machine, and the label

pointing toward the left side of the drives. When the disk

is fully inserted, close the door of the drive. It should

not reguire any force to close the door. If you meet resis-

tance, check to see that the disk is FULLY inserted into the

drive.

Press the "B" key of the keyboard. On the screen you

should see the word "Boot" appear beside the "H:" cremft.

If it dees NOT, press the OFF LINE key that is found in the

upper left position of the keyboard. Press the "B" key

again. If the word "Eoot" does not appear, seek assistance.

283

*-• Once tte screen says "Boot", press the 8ET0RN key en the

keyboard. The external drive with the disk in it should

begin te turn, the light on the drive door will light and

after a few moments you will be given some information on

the screen about the configuration of the system. «hen the

system is fully booted, the standard CP/M prompt will appear
MA>M. This prompt indicates that CP/H is in operation, and

that the presently active disk is disk A, the left hand

external drive. The external drives are configured as

drives A, B and C. The internal drive is configured as

drives D, E and F. NOTE: THE INTERNAL AND EXTERNAL DRIVES

DO NCT OSE THE SAME TYPE OF DISKETTE. DO NOT ELACE A

DISKETTE HARKED FOR INTERNAL USE ONLY IN THE EXTERNAL DRIVE.

AND DC NCT USE DISKETTES MARKED FOR EXTERNAL OSE ONLY IN THE

INTERNAL DRIVE. THE CNLY DISKETTE YOO NEED FOR THE INTERNAL

DRIVE IS THE SYSTEMS EISKETTE WHICH YOO HAVE BEEN GIVEN AND

IS *£EKFD AS SOCH.
If the system fails to boot, try again. Press the SHIFT

and RESET k*ys simultaneously to force the computer back to

the "H:" prompt and type "B", followed by RETURN, again. If

the computer will NOT boot at all, seek assistance from the

operator.

(
284

Section 2
CP/H

-*

(

2.1 BASICS
Once the computer has booted the operating system, you

are in the CP/M environment. There are many excellent hocks

on the CE/M operating system. If you wish to learn mere

about the system you are encouragsd to read some of them.

This manual «ill only provide you with the information

necessary tc run the applications packages provided with the

system.

The "A>" prompt indicates that the active drive of the

system is the A drive. To change drives simply type in the

letter of the drive and a colon and press RETURN. The

system will check tc see that that drive has a disk in it

and change the prompt to the letter of the new active disk.

For instance, load an external disk in drive B and close the

door. Press the B key, the colon key (:) and then the

RETURN key. After a short interval in which the drive turns

briefly, the screen will show the new prompt "B>". To

return to the A disk type "A:" and RETURN. The A> prompt

will return immediately because the system already knewjs

that there is a disk in drive A. To read a list of files on

the disk in the addressed drive, type the word "DIR",

followed by the RETUEN key. Upper and lower case dc not

usually matter to CE/H--it converts all commands to upper

case. The screen will show a list of all the files on the

active disk. Fcr the directory of any other disk than the

active cne, type the word "DIR", a space, and the letter of

the desired drive, followed by a ":" and then RETURN. The

directory of the designated diskette will be displayed.

285

:

<

A filename in CP/M consists of three parts: the disk

specification, the filename and the filetype, in the format

"d:filenaae. filetype" where "d" is the disk drive "rame,

filename is the primary name of up to 8 alphabetic or

numeric characters, and filetype is the optional filetype of

up to three alphabetic or numeric characters separated from

the filename by a period. Legal variations are:

filename (a file on the current drive, filetype " ")

d:filename (a file on drive "d", filetype " ")

filename, typ (a file on currant drive, filetype "typ"

d: filename, typ (a file on drive "d", filetype "typ")

If the drive specification is missing, CP/M will lock for

the file en the presently active drive only. To lock at

drive B from the "A>" prompt, for example, the "B:" MUST be

in the file specification. To view all the files en the B

disk from the "A>" prompt type "dir b:" and press return.

To view files on drive C, type "dir c:", etc.

At this point it is appropriate to discuss briefly the

concept of ambiguous and unambiguous file specifications.

Unambiguous specifications are of the forms previously

displayed. The name is specific to the drive, filename and

filetype. In the ambiguous file specification some element

of the specification is replaced by an asterisk "*" or a

question mark "?". In these instances the system will

perform the operation directed en all files with names that

natch the unambiguous part of the name, without reyard to

the part substituted for by the asterisk. The drive speci-

fication will NOT accept the asterisk. For example from the

sequence "A>dir *.com" will display all the files en the A

disk with the filetype ".com". Some CP/M functions will

allow ambiguous specifications, and some will not. See the

Digital Research literature on CP/H for specifics. The

question nark is a "wild card" replacement for any letter or

number in a filename. "A>dir stats?, fil" will display all

286

J

I

1

the files 02 the diskette which match the format, including

variations such as:
statsl.fil
stats2.fil
statsd.fil
statsa.fil

It will NCT match "stats 11.fil" however, because the length
is lcnger on the file than the designated pattern. (Note
that "Ä>dir ????????.???" is the same as "A>dir *.*•')

Tc erase a file en a disk type "ERA " followed by the
file ycu desire to erase. If the disk is not write
protected or read-only, the file will be erased immediately.
If you use an ambigucus specification, all files meeting the
specification will te erased. (A>era *. * will erase ALL
files on the A disk, A>era *.doc will erase all filss with

the filetyp ".doc" on the A disk, etc.)
To rename a file, use the command "REN". "REN" requires

unambiguous specifications. The syntax for REN is "A>ren
d:newname.typ=d:cldname.typ". (The convention of the new
coming first is common to ALL CP/M commands and functions.)

Tc save a file tc memory use the "SAVE" command. The
syntax for the command is »A>save ## d:filename.typ". The
indicate- the number of "pages" of memory to save. A
page of nemcry is 256 bytes. CP/M uses the first page for
itself, and therefore the pages begin at the second page for
the user. The SAVE command will move to the disk indicated
the number of pages indicated, starting at the secend
physical page of memory and continuing to the page number

"##" plus one.
TYPE d:filename.tyF will display on the console the data

of the file named. Names must be unambiguous. Tc stop

display, press ANY key.

(
287

AU-A132 353

IINCI ASS1FIE0

DEVELOPMENT OF THE COMPUTER SYSTEMS MANAGEMENT ^ «4
INSTRUCTIONAL LABORATORY AT THE NAVAL POSTGRADUATE
SCHOOL(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
K J MILLS ET AL. JUN 83 F/G 5/9 NL

END
DATE

FHWD

1 Q po

•*"

I

-.

s <r

LO BUM

I.I

2.5

Sgflää
t I« 12.0

1.25 11.4 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS - 1965" A

H

;

(

8
2.2 SSKSSi CHARACTERS OF CP^fi

The following table indicates the control characters in
CP/3 and their function. For more detail, see the CF/M
users manual fron Digital Research, Inc.

EACKSEACE moves cursor one space back, erasing character
CTRL-C aborts a running program,

causes a warm boot from the D> prompt
DEL same as ROB
CTRL-E forces a physical carriage return,

does NOT pass to CP/H
CTHL-H same as BACKSPACE
CTRL-J Linefeed, terminates input at console
CTRL-M same as carriage return
CTRL-F echoes all screen data to printer, the second

CTRL-P terminates the function
CTRL-H re-types the current line, as corrected
RETURN carriage return
RUB erases character immediately to the left cf

cursor echoes the character to the screen
CTRL-S stops listing of file to screen temporarily,

second CTRL-S resumes the listing
CTRL-0 cancels the present line
CTRL-X deletes the present line
CTRL-2 string or field separator

:;

<

i-»-

2.3 0T3MISS
There are several utilities included with the standard CP/H.
These utility programs are on -he disk which is marked
"SYSTEMS DISK, Use in INTERNAL drive only". To run these
programs you must address the programs with the drive desig-
nation WD:W. The programs supplied are:

FIP.CON (Peripheral Interface Program)
EC.CON (EDitor program)
STAT.COH (STATUS of disks, files, etc.)

288

t

(

c

ASB.COM (ASseHbler program for 8080 mnemonics)

DDT.COM (Dynamic Debugging Tool)
FORHAT.COH (Formats new diskettes)
SYSGEN.COM (Installs system tracks on diskettes)

Of these utilities, EIP is the one aost often used. It can

be used to transfer information from one peripheral to
another. The uses cf PIP include printing to paper the
contents of a file on diskettes, printing to th screen the
input from a reader device, copying disk files from one
source diskette to another destination disk, making backup

copies of a diskette, etc. For more information on the uses
cf PIP, see the Digital Research literature on the subject.

The second most popular utility is STAT. STAT returns
the status cf files, diskettes, drives, peripherals, etc.
You can use STAT to determine the size of existing files,
the space left on a diskette, the size and type cf drive
connected, the logical input and output devices addressed by
CP/M, etc. Again, see the Digital Research manuals for

information.
ASH and DDT are tools for the programmer who wishes to

write assembly language programs. The ASH program assembles
standard Intel 8060 mnemonic language into machine code.
DDT will display any portion cf memory, allow it to be modi-
fied, and run with breakpoints and controls in the
seguences. see the manual from Digital Research for mere
information. If you wish to learn about machine language
code, see the Prompt80 tutorial of this series of tutorials.

FORHAT and SYSGEN are tools normally not needed by the

applications user or programmer. If you need to format a
new diskette, FORHAT is self documenting. SYSGEN is simi-

larly self documenting. Note that NO OSER DISKETTE SPACE is
consumed by the system of CP/H. For that reason, there is
nothing to be saved ty NOT SYSGENing every diskette as it is

289

u ;

.

10

formatted. The policy of the laboratory is that EVERY disk-
ette «ill have CP/M SYSGENed to it. If you need help, see

the Digital Research literature.

2.» POBBBIMG fiOIH THE SYS TEH
The last issue to be covered is the power-down sequence.

It is important to remove power in a logical sequence to
prevent inadvertent erasure of data on diskettes.

The first step in shutting down the H-89 is to remove all
diskettes from the drives. Note that if you remove a disk-
ette from a drive with a file still OPEN, the directory for
that file is not accurate, and the file will be lost or
damaged. To be sure, a good policy is to always return to

the CF/H prompt "4>M before shutting down. This way all
files are closed and diskettes are ready to be removed.

Once tte diskettes are removed, and properly stored, turn
off the equipment in the inverse of the power on sequence—
•ain computer first, followed by peripherals. Once all
equipment is turned off, close the disk drive doors to
reduce the entry of dirt to the drives. The printer
requires nc special attention at shutdown.

i

(
290

-I-

I

(

11

The diskettes of a microcomputer are the key to the

utility cf the installation. They do, however, require

certain care in handling. Do not touch the »agnetic

material visible through the holes in the covering with your

hands or with any foreign object. Virtually undistirgui-

shable dust particles can ruin a diskette and the read/write

heads of the drive in which it is installed. Beyond

physical abuse, tbe diskettes are also susceptible to

magnetic fields. One of the most common mistakes is to put

the diskettes on top of the computer, in the magnetic field

cf the Cathcde Ray Tube of the display. Another enemy of

diskettes is the telephone. when the bell rings, the

magnetic field around the instrument is strong enough to

erase a diskette if it is nearby. Always return the disk-

ette to its jacket when out of the machine, and store care-

fully, even if it is needed again soon. These lessons have

been learned with considerable "pain" by others. Be wise!

c
291

12

This concludes the tutorial on the H-89 Microcomputer and

peripherals. For mere detail, see the Heathkit operating

manuals fcr the specific equipment. For applications pack-

ages, see the individual program instructions and manuals

that accompany the software.

t

(

292

l

('

<

BIBLIOGRAPH?

Bork, A., learning with Computers, Digital Equip
Corpcraticn, 19817

ment

Buckingham, R.A.(ed), Education and Largje Information
Systems, Ncrth-Hclland PutTTsTiTng'To.7""T977T*~

Couger, J.D., Computers and the Schools of Business.
Business Besearch"" Division, ~ ScaooT or""" ""Business
Administration, University of Colorado, 1967.

I., "On the Education of Information System
Specialists", 3IgS,CE BULLETIN, v. 13, n. 2, pp. 21-25, June,
Oinerstain,
Specii "
1982.

Glass, a.I., and de Nim, Sue, Jhe Second Coming: More
Computing £S2J5Sli Wh4sfe Failed. CoIpUtingTrencis, 1980.

Gruenberger, ?. (ed.), The SDP geople Problem. Data
Processing Digest, Inc., 19TT.

Kearsley, S.F., Hillelsohn, . a.J.r and Sidel, R.J.,

Kraft, P., Programmers and Managers. J_he Routinization of
Computes FiggfamB^ng~iia"*ttg Uni'Ted States.*" springer-verTagT

I 7 / / m

McCluskey, E. J.. Jr., "Minimization of Boolean Function",
Bill SlStem l££hnj£al Journal. v. 25, pp. 1<i17-1«<t«, 1956.

Sein. Hm. J., "Cn Students Presenting Technical Material to
Non-technical Audiences in a Computer Science Curriculum",
SISSCE BULLETIN, v. 14, ft. 2, pp. 97-101, February 198 2.

Pratt, L.J., and Davis. L.D., "The Use of Computer Aided
Instruction in the Teaching or Bacroeconomic Principles",
SlGCCE §UL1STIN, v. 15, n. 1, pp. 2-14, January, 1981.

Pratt, L.J., and Davis, L.D., "The Ose of Computer Aided
Instruction in the Teaching of Sacroeconomic Principles--an
update", 5I5C0E BULLETIN, v. 16, n. 1, pp. 16-21, Summer,
19 82.

293

U

Suine, ». V., "A way to Simplify Truth Functions", American
-äthejatics Monthly,, v. 62, pp. 627-631, 1955.

Sayle, E.F., »•Assessing ycur Data Management Needs", Desktop
Computing, n. 18, pp. 38-U1, »arch, 1983.

Shepcard, J.G., "Automation in the Office: What can it do
for you?". Desktop. coapu.ting. n. 18, pp. 50-58, March, 1983.

Sherrard, Jchn C., Hayes, Jchn R., "A Computer Aided
Instruction Tutorial for the HAMTEK 9<*00 Color Graphics
Display System at the Naval Postgraduate School Monxerey,
California". Naval Postgraduate School Monterey, Ca.,
December 1981.

(

f
29*»

'

INITIAL DISTRIBUTION LIST

f.

2.

3.

4.

5.

6.

7.

8.

9.

10

Defense Technical Information Cenxer
Camercn Station
Alexandria, Virginia 2231«

Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

Prof. N. Schneidawind
Code 54Ss
Naval Postgraduate School
Monterey, California 93940

Prof. C. R. Jones
Code 54Js
Naval Postgraduate School
Monterey, California 93940

Prof. H. S. Elster
Code 54 Ea
Naval Postgraduate School
Monterey, California 93940

Asst. Prof. D. 3. Dolk
Code 54Dk
Naval Postgraduate School
Monterey, California 93940

Computer Technology Curriculum Office
Naval Postgraduate School
Monterey, California 93940

CDS Jesse M. Richards, III
4132 Binton Drive
Fairfax, Virginia 22032

IT Glen E. Tilley
620 Thomas McKeen Street
Orange Park, Florida 32073

LT Kenneth J. Mills
56 lilt« Eine Court
California, Maryland 20619

No. copies

2

295

-4

